INSTITUT POLYTECHNIQUE DE PARIS

Final Project using FIT/IOT Lab
Wireless

Tianchi Yu

September 5, 2023

1. OVERVIEW

Recent years, with the development of IoT technique and the industrial automation, using
sensors to capture the environment and connecting things with network are common and
popular ways to make the industrial processes safe and efficient, to make our life conve-
nient. Abundant IoT applications are implemented in various kinds of scenarios, here in
this project, I propose one IoT application working on the safety of sensitive cargo during
transportation.

1.A. DEFINITION AND INTRODUCTION OF THE ASSUMED IOT APPLICATION

Food and medical supplies often require temperature and humidity control during storage
and transportation. In order to facilitate control, logistics companies use sealed containers
with environmental controls. These containers are equipped with sensors that will send
status reports to the central network to monitor these containers to control humidity and
temperature. If there is a problem with the environment inside the container, if a leak in
the sealed container is found, the sensor will immediately send an alarm to the central
network to take appropriate measures. The use of the Internet of Things can reduce the
deterioration of sensitive goods and prevent pollution.

It’s a very important application according to the scope of using, and also a very prospective
application for different levels of security. For example, because insulin drugs have higher

requirements for the delivery environment than ordinary drugs, UNOPENED insulin is best
stored inside the fridge [2° to 8°Celcius (36° to 46°Fahrenheit)]. Heat makes insulin break
down and will not work well to lower your blood sugar. Also, if insulin is frozen(lower than
0°Celcius), do not use even after thawing. Because freezing temperature will break down
the insulin and then it will not work well to lower your blood sugar. Then the entire process
needs to be accurately controlled at 2-8°C, and real-time temperature monitoring is critical.
Insulin is also very sensitive to sunlight, indoor lights.[1]

Another example is the COVID-19 VACCINE by Pfizer. The vaccine transport, storage and
continuous temperature monitoring have extreme constraints. For example, there are three
options for storage: ultra-low-temperature freezers, which are commercially available and
can extend shelf life for up to six months; the Pfizer thermal shippers, in which doses will
arrive, that can be used as temporary storage units by refilling with dry ice every five days
for up to 30 days of storage; refrigeration units that are commonly available in hospitals.
The vaccine can be stored for five days at refrigerated 2-8°C conditions.[2]

To be more precise and describable, we set the scenario as a medical drug delivery vehicle
in motion, where the drug need to be maintained at a strict interval of temperature and sev-
eral other conditions, which we will talk about later in the architecture. The IoT application
is named Medicine-Guardian.

2. ARCHITECTURE OF THE SYSTEM

2.A. THE FUNCTIONS IMPLEMENTED

Here I provide several automation functions of Medicine-Guardian, which implement three
different scenarios for several medicines on the delivery vehicle:

1) Collecting light information and calling the alarm when the light is on. Once we get
the signal of alarm for light, switch the states of lights(turn off the light).

Corresponding scenario: Supposing that there is one drug that need one strict light con-
straint of darkness, it cannot suffer from lightness.

2) Collecting temperature information information. If the temperature is >8°C or <2°C,
turn on the heater(temperature controller) until the temperature arrives 5. However, if
there is the temperature is extremely low or high (<0°C or > 30°C), or no heater could be
used, send alarm to the monitor. To make this scenario more interesting, we will add more
details for the heater at the part of implementation.

Corresponding scenario: Supposing that there is one drug that the best storage temperature
is between 2 and 8. If the temperature is lower than 0 or higher than 30, the drug will be
useless.

3) Collecting accelerator information, and sending alarm if accelerator sensor has a great
value or it makes a great change in short time period.

Corresponding scenario: Supposing that there is one drug that cannot accept the shaking,

we need to avoid the possible violent variation of velocity.

2.B. SERVERS AND CLIENTS INSTALLED

In this project, we set two kinds of clients: on the front-end and on the sensor node. To
realise the communication, we also need one server on the sensor node. In the experi-
ment, we reserve some M3 nodes on the Grenoble site, and set them up with flashing two
firmwares nodes. Also, to compare the difference between HTTP and COAP, we can access
nodes over HTTP over IPv6 from the SSH frontend by using a Contiki tunslip6 bridge and
launch HTTP server or launch requests on a CoAP Contiki Erbium server implementation.

3. DEMO OF MEDICINE-GUARDIAN

To give a full view of the demo, we offer the code of the CoAP server/client and the HTTP
server/client and other files needed.

3..1. ADD EXPERIMENTS

We build a test bed with 3 sensor nodes with Architecture m3 (at86rf231) of Grenoble site,
named "comasic4";

Experiment comasic4 #241943

User comasic4

Submitted 2021-01-05 21:58:00
Started 2021-01-05 21:58:01

Duration || 6 minutes (5%) of 2 hours
Nodes 3

SE] Running

O Stop | & Download ‘ # Actions on selected nodes ~

Nodes uiD Firmware Monitoring Deployment Actions

m3-95.grenoble.iot-lab.info ario Success » & F F >
m3-96.grenoble.iot-lab.info b468 Success » & Z F F >
m3-97.grenoble.iot-lab.info b179 Success » & F F >

Figure 3.1: Test Bed

Basic processes:

Compile firmwares on SSH front end;

"m3-96.grenoble.iot-lab.info",
"m3-97.grenoble.iot-lab.info"

Figure 3.2: Example: flash CoAP firmare

Choose an available IPv6 prefix for the site you are experimenting on. For example in
Grenoble testbed : we choose 2001:660:5307:3110::/64

comasic4@grenoble E-1lab/ ontiki ples, rpl-border-routerS sudo tunslip6.py -v2 -L -a m3-
95 -p 20000 2001:
Switch from 'root' to 'comasic4'
Calling tunslip:
'tunslipé [u'-v2', '-a', 'm3-95', '-L', '-p', '20000', '2001:660:5307:3110::1/64"']"
slip connected to " '172.16.10.95:206000"'"'

opened tun device *°j/dev/tunl’

ifconfig tunl inet “hostname’ mtu 1508 up
ifconfig tunl add 2601:660:5307:3110::1/64
ifconfig tunl add fe86::660:5307:3110:1/64
ifconfig tunl

: flags=4305<UP,POINTOPOINT,RUNNING, NOARP,MULTICAST> mtu 1500
inet 192.168.1.5 netmask 255.255.255.255 destination 192.168.1.5
ea73:7ab8:6198:5765 prefixlen 64 scopeid 8x28<link>
60:5307:3110::1 prefixlen 64 scopeid 0x@<global>
0:5307:3110:1 prefixlen 64 scopeid 8x28<link>
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 508 (UNSPEC)

RX packets & bytes 0 (0.6 B)

RX errors ® dropped ® overruns @ frame 0

TX packets & bytes 0 (6.6 B)

TX errors ® dropped © overruns ® carrier @ collisions @

Platform starting in 1...
GO!
[in clock_init() DEBUG] Starting systick timer at 106Hz

**%* Address:2001:660:5307:3110::1 => 2001:0660:5307:3116

Starting 'Border router process' 'Web server'Got configuration message of type P
Setting prefix 2001:660:5307:3110::

Server IPv6 addresses:

2001:660:5307:3110::a770

fe80::a770

Figure 3.3: Get BR address

Choose one node in the nodes list to implement the Border Router (BR) node - here we
choose node m3-95

Start tunslip6 on the SSH frontend
Deploy the Border Router (BR) node on selected node using the CLI tool iotlab-node.

Then we need to choose one node and wait for deploying: build HTTP server - simple IPv6
node or IoT-LAB version of CoAP Erbium server;

FORHTTP

Deploy one HTTP server node (here node 96).

FOR COAP

comasic4@grencble:~$ iotlab-node --update ~/iot-lab/parts/contiki/examples/ipvé6/rpl-border-router/border-
router.iotlab-m3 -1 grenoble,m3,95

{
v [

"m3-95.grenoble.iot-1ab.info"

]

}

Figure 3.4: Deploy Border Router

Choose one CoAP server node(here node 96).

For the server/client on sensor node, we need deploy the server and client separately on
two nodes.

Note that, every time we change the code or add resoureces, we need to compile for iotlab-
m3 target and update the node.

For now, we have a basic environment for the experiment. Then we will implement the
three functions(mainly realized by CoAP).

3.A. IMPLEMENTATION OF COAP CLIENTS
3.A.1. COAP CLIENTS ON THE FRONT-END

For this experiment, we only need two nodes actually, one for the border router and another
for the CoAP server. To make the whole test consistent, we still choose three nodes, while
only two of them are used. We want to implement the first function by this method, which
means we want to collect the light information by the front-end and test the alarm when
the light is on and activate the command to turn the light off.

First Scenario

At first, we need to deploy the Border Router node and CoAP server node. We choose m3-95
and m3-96 separately. Then use "aiocoap-client coap://[2001:660:5307:3110::b468]:5683 / XXX/ XXX"
command by the client(front-end), we can get the information from server.

To realise the first function implemented, we need to do the following steps:

1) Collecting light information:

light_1info;
pressure_info;
temper_info;
useless;
heater_info;

acc_x, acc y, acc_zfi

Figure 3.5: Some extern variables

First, make sure that we have the "light" resource, and extern it in the CoAP server code,
and activate the light sensor. We add one global variable in the extern_variable.h to record
the value of light by the server.

Because the real state of light is always off(the value of light_info is always 0), we need to
simulate the situation when the light becomes on. So I changed the code of res_light.c to
control the value of light. By using a random integer, we set the light on when the integer is
amultiple of 5. So we can collect the light information and get the state of light.

uint16_t light = light_sensor.value(®) / LIGHT_SENSOR_VALUE_SCALE;

=: %d\n",light);

printf("L
printf("The lig

printf("é .ﬂg. r is on, we need
1
light_info = light;

Figure 3.6: Light sensor

As the code above in the res_light, we simulate the signal of light. Because in the real case,
the light could be always turned off, we couldn’t see the difference. The signal of light stands
for the state of light. Notice that, once the light is turned on, it has to be turned off by calling
the res_switch resource. It means if we don’t use another resource to change the state, the
value of light_info will always be 1;

2) Testing the alarm:

When the light is on, we need to test the alarm and we have a clear information that there is
an alarm for light! The command is "aiocoap-client coap://[2001:660:5307:3110::b468]:5683
/my_res/new_alarm"

3) Turning off the light

Once we get the information of alarm, the workers will know the light of the package is
turned on and unacceptable. Then the next step is to turn the light off manually. Here, we
add one resource res_switch, it could turn off the light when we ask it by the command.

No newline at end of _message)
omasicd4@grenoble:~$ | aiocoap-client coap://[2001:660:5307:3110::b468]:5683/sensors/light

No newline at end of message)

omasic4@grenoble:~$
comasicd@qgrenoble: ~

MfH(F) RIE(E) TAV) #EG) iR FHhH)
ast login: Fri Jan—_ 8 1A:AA:46 2A21 _from 192.168.1.254
omasicd4@grenoble:~$ nc m3-96 20000

latform starting in 1...

nit() DEBUG] Starting systick timer at 108Hz
Erbium Example Server'
IDP packet received!
andle_incoming_data(): received uip_datalen=51
eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:0001]:58061
Length: 51
Parsed: v 1, t ©, tkl 4, c 1, mid 48110
URL: sensors/light
ENAGELH
he real light value: ©
Test for_the madel
L IGHT VALUE : @
‘he light is off, GOOD
JDP packet received!
andle_incoming_data(): received uip_datalen=51
eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:0001]:46055

c 1, mid 47183

Payload:
e al light value: @
----Test for the model

IGHT VALUE : 1

he light is on, we need to turn it off!

JIDP packet received!

andle_incoming_data(): received uip_datalen=51

eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:0001]:50025
h: 51

vi, te, tkl 4, c 1, mid 10738

ensors/light

ENAGELH

he real light value: ©

-------Test for the model

IGHT VALUE : 1

he light is on, we need to turn it off!

Figure 3.7: Collecting light information

(No newline at end of message)
omasic4@grenoble:~S |alocoap-client coap://[2001:660:5307:3110::b468]:5683/my_res/new_alarm

he ALARM is ON !!!

omasic4@grenoble:~S |alocoap-client coap://[2001:660:5307:3110::b468]:5683/my_res/switch
he light is now @.

omasic4@grenoble:~$ | |

comasicd@grenoble: ~

NH(F) WRIEE) &EE(V) BER((G) £LiRm EEH)
URL: my_res/new_alarm
EVAGELH
Light is received by alarm : 1
emperature is received by alarm : -10080
Accleration is received bv alarm : @, @, ©
Last accleration in x dimension |s received by alarm : @
PR E R H s HAHHHBHERRY
prst L ight#es---- - - >HHARALARMEHH
PR E R H s HAHHHBHERRY
JDP packet received!
andle_1incoming_data(): received uip_datalen=51
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:0001]:59607
Length: 51
Parsed: v 1, t 0, tkl 4, c 1, mid 25084
URL: my_res/switch
Pavload:
Start to simulate the switch process
rurn off the light!

Figure 3.8: Testing the alarm and turning off the light

3.A.2. COAP CLIENTS ON THE SENSOR NODE

To make it clearly, we always set the m3-96 as the CoAP server and deploy the client on the
node of m3-97.

e$S ilotlab-node --up

omasic4@grenoble:~
-1

Hate ~/iot- lab/parts/contlkl/c(amplcs/totlab/04 er-rest- c(amplc/cr c(amplc server.iotlab-m3
grencble,m3,96

"gt: [
"m3-96.grenoble.iot-1lab.info"
]

omasic4@grenoble:~ $ lotlab-node --up

Hate ~/iot- lab/parts/contlkl/c(amplcs/totlab/04 er-rest- c(amplc/cr-c(amplc client.iotlab-m3 -1
grencble,m3,97

"gt: [
"m3-97.grenoble.iot-1lab.info"
]

Figure 3.9: Deploy client and server CoAP

First Scenario
To explain: We also implement this scenario by the CoAP clients method. We only display
the result for this scenario here.

Second Scenario

The heater in this experiment is not only used for heat the drug. Actually, it stands for
temperature. To simplify the situation, the heater can adjust the temperature directly to
5°C if the temperature is between 0 and 2 or between 8 and 20. And the heater can only be
used for once, which makes sense. Because if the temperature keep going wrong even with

The real light value: 0
Test for the model
LIGHT VALUE : ©
The light is off, GOOD STATE!
UDP packet received!
handle_incoming_data(): received uip_datalen=37
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 37
Parsed: v 1, t @, tkl @, c 1, mid 52260
URL: my_res/new_alarm
Payload: Alarm - Toggle!
Light is received by alarm : 0
Temperature is receilved by alarm : -1000
Accleration is received by alarm : 8, 8, 0
Last accleration in x dimension is received by alarm
UDP packet received!
handle_incoming_data(): received uip_datalen=35
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 35
Parsed: v 1, t @, tkl @, ¢ 1, mid 52261
URL: my_res/switch
Payload: Switch - Toggle!
Start to simulate the switch process
No need to switch !

(a) picl.good state of light

JDP packet received!
andle_incoming_data(): received uip_datalen=34
eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 34
Parsed: v 1, t ©, tkl @, ¢ 1, mid 52262
URL: sensors/light
Payload: Light - Toggle!
he real light value: @
Test for the model
ICHT VALUE : 1
he light is on, we need to turn it off!
JDP packet received!
andle_incoming_data(): received uip_datalen=37
eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 37
Parsed: v 1, t ®, tkl @, c 1, mid 52263
URL: my_res/new_alarm

Payload: Alarm - Toggle!
ight is received by alarm : 1
emperature is received by alarm : -1000
ficcleration is received by alarm : @, 0, @
ast accleration in x dimension is received by alarm :
HHERHHHBRTH HHBHH R

>HHHALARM#H#H
HUHAHH AN
JDP packet received!
andle_incoming_data(): received uip_datalen=35
eceiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 35
Parsed: v 1, t @, tkl @, ¢ 1, mid 52264
URL: my_res/switch
Payload: switch - Toggle!
----Start to simulate the switch process
urn off the light!

(b) pic2.bad state of light

Figure 3.10: Light function implementation

Toggle timer
First Scenario
[2001:0660:5307:3110:0000:0000:0000:b468] : 5683

equested

#0 (MID 52262)

IDP packet received!

andle_incoming_data(): received uip_datalen=7

UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683
7

v1, t2, tkl &, c 69, mid 52262

receiving
Length:
Parsed:
URL:

EVAGELH

1

eceived ACK
Received #0 (1 bytes)
11- ---Alarms and Operators

Requested

#0 (MID 52263)

JDP packet received!
andle_1incoming_data(): received uip_datalen=26

receiving
Length:
Parsed:
URL:

Payload:

UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683
26
v 1, t2, tkl &, c 69, mid 52263

The ALARM is ON !1!1

eceived ACK
Recelved #0 (20 bytes)
| The ALARM is ON !1!

Requested

#8 (MID 52264)

JDP packet received!
andle_1incoming_data(): received uip_datalen=26

receiving
Length:
Parsed:
URL:

Payload:

UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683
26
v 1, t2, tkl &, c 69, mid 52264

The light is now @.

Recelved #0 (20 bytes)

Figure 3.11: Received by client

10

the heater during the transportation, there is no way to add one more heater to control the
temperature.

If there is the temperature is extremely low or high (<0°C or > 30°C), send alarm to the
monitor, and the drug will be useless.

1) Collecting temperature information information:

Firstly, we need to add the temper_info as the global variable to record the temperature
information. Note that, set the initial value of temper_info as -1000 is to sign the initial
state, which will not cause the alarm on.

Notice that in grenoble platform, the sensors don’t have the capacity of collect tempera-
ture. Here we offer two options, one is using another available sensor who can capture one
feature(for example, pressure) as the value of temperature, another option is creating self-

resource and create the feature of temperature by ourselves. The first method will take the
similar process as the first scenario, then we decide to use the second method.

We create the "new_temperature" resource, which will create the value of temperature ac-
cording to some logic defined.

1. The initial temperature falls down into the 2-8.

2. Set a possible noise by the random integer and some hash methods, to decide the varia-
tion of the temperature.

3. For the following collection, the temperature will inherit the previous value + some noise.
2) Using Heater:

The client node will decide whether using heater every time it collects temperature infor-
mation. When the temperature is out of normal interval, the heater will work and adjust the
temperature. However when the temperature keeps going worse or it becomes extremely
high or low, the heater will be useless, also the drug.

As we have discussed, the heater resource is created as following:

3) Testing the Alarm:

The client node will test the alarm every time it collects temperature information. If the
heater could control the situation, it keeps calm. Instead, the alarm will be on.

11

static void
res_get_handler(void *request, void *response, uint8_t *buffer, uintl6_t preferred_size, int32
t *offset)

printf(

const char *len = NULL;
int temperature_old = temper_info;
int intern_temperature temper_info;
if(temper_info == -10808){

intern_temperature = rand() % 6 + 2;
Yelse{

intern_temperature = temperature_old;

}

int flag = rand() % 50;

if(flag % 3 0){
intern_temperature

}else if(flag ? =0){
intern_temperature

}else if(flag % 0){
intern_temperature -= 4;

Yelse{
}

temper_info = internitemperatureﬂ

printf("Temperature is captured: %d\n",temper_info);

if(intern_temperature<8){
printf("T
useless = 1;
}else if (intern_temperature
printf("The temperat S W € er should be tu
}else if (intern_temperature intern_temperature <= 8){
printf("The perat rmal 'K
}else if (intern_temperature
printf("T 1
useless
Yelse{
printf("T
}

Figure 3.12: Self-defined temperature sensor resource

Etatic veid
es_get_handler(void *request, void *response, uint8 t *buffer, uinti6_t preferred_size, int3z
t *offset)

printf(: ulate the er proce ---=\n");
const char *len =
if((temper_info > temper_info <2) || (temper_info <= 20 && temper_info > 8)){
if(heater_info == 0){
heater_info =
printf(
temper_info
printf(

printf(

Figure 3.13: Heater Resource

12

< one=-===
URL: my,r:s/ntw temperatur: Toggle timer
Payload: Temperature - Toggle Second Scenario
tart to simulate the temperature sensors- [2001:0660:5307:3110:0000:0000:0000:b468] : 5683
enperature is captured: 12 Requested #0 (MID 52247)
he temperature is too high ! Heater should be turned off UDP packet received!
handle_incoming_data():
receiving UDP datagram fro
4

000:b179] :5683 Length: 49
Parsed: v 1, t 2, tkl 0, c 69, mid 52247

0P packet received! received uip_datalen=49

andle_incoming_data(): [2001:0660:5307:3110:0000: 000!

receiving UDP datagram fro
Length: 37
Parsed: v 1,
URL: my_res/new_alarn

received uip_datalen=37
[2001:0660:5307: 311

toe, tkLo, c 1, mid 52248 URL:
Payload: The temperature resource is now 12 deg

Re ved ACK
Received #A_(43 hytes)
IThe temperature resource is now 12 degre

o,
e A e o o e e by alarn : ® s —and-Operators-
Requested #0 (MID 52248)
UDP packet received!

received uip_datalen=24

received uip_datalen=35
:56 handle_incoming_data():
[2001:0660:5307:3110:0000: 000!

[2001:0660:5307:3110:0000:0000:0000:b179] :5683
receiving UDP datagram fro
1, to, tkLe, c 1, mid 52249 Length: 24
Parsed: v 1,
URL:
Payload: The ALARM is OFF

IDP packet received!
andle_incoming_data():
receiving UDP datagram from:
Length: 35
Parsed
URL: my_res/heater
Payload: Heater - Toggle
tart to simulate the heater process-
$$$95SHeater is turned on now.$5$$$$S
emperature is justed by heater to: 5 ved ACK
JOP PacKet Tecetvedt Received #0 (18 bytes)
andle_incoming_data(): received uip_datalen=50 |The ALARM is OFF
receiving UDP datagram from: [2001:0666:5367:3110:0000:0000:0000:b179]:5683 REqUESTEq 6 (MID 522497
Length: 50 UDP packet received
parsed: v 1, t 0, tkl 0, c 1, mid 52250 le_inconing_data()
URL: my_res/new_temperature iving UDP datagram from
Temperature - Toggle Length: 48
tart to simulate the e Saae: V1, t2, tkLo, c 69, mid 52249

t 2, tkl o, c 69, mid 52248

received uip_datalen=48
[2001:0660:5307:3110:0000:0000:0000:b468]:5683

he temperature is too h\gh ! Heater should be turned off Payload. The temperature resource is now 5 degree
received!
- received uip_datalen=37 Received ACK
ving UDP datagram from: [2001:0660:5307:311 000:b179]: 5683 ved #0 (42 bytes)
Length: 37 |The temperature resource is now 5 degree
Parsed: v 1,
URL: my_res/new_alarn

to, tkLe, c 1, mid 52251
Done

Figure 3.14: Heater works for second scenario

UDP packet received!
handle_incoming_data():

received uip_datalen=35
receiving UDP datagram from: [2001:06!
EL

60:5307:3110:0000:0000:0000:b179] : 5683
00:0000:b468] : 5683

Length

Parsed: v 1, t 0, tkl 0, c 1, mid 52240 8

URL: my_res/heater Requested #0 (MID 52241)

| Payload: Heater - Toggle UDP packet received!
handle_incoming_data(): received uip_datalen=49

ieater is not useful for this situation ! receiving UDP datagram from: [2001:0660:5307
Length
Parsed: v 1, t 2, tkl 0, c 69, mid 52241

received uip_datalen=50 Ui
eiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683 Payload: The temperature resource is now 34 degre
Length: 56
1, to, tkLe, c 1, mid 52241
URL: my_res/new_temperature Received #0 (43 bytes)
Payload Temperature - Toggle IThe temperature resource is now 34 degree
rt to sinulate the temperature sensors-- larms and Operators
T:mp:ratur: is captured: 34 Requested #0 (MID 52242)
INo matter what is the temperature, the drug is already useless ! UDP packet received
handle_incoming_data():
receiving UDP datagram from:
Length: 26
Parsed: v 1,
URL:

joor pa(k T recetved! received uip_datalen=26
handle_incoming_data(): [2001:0660:5307

received uip_ datalen 37
v\ng UDP datagram from: [2001:06 o7

Length: 37
v, te, tkLe, c1, md 52242
Payload: The

000:0000:0000:b179] : 5683
t 2, tkl o, c 69, mid 52242

RM is ON 111

[Temperature is received by alarm : 34
Accleration is received by alarm : @, 0, 0
Last accleration in x dimension is received by alarn : @
HHHHHHHARRY
HHHALARMEHH
HUHHRH ving UDP datagram from:
Length
: received uip_datalen=35 Parsed
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683 URL
35 Payload: The temperature resource is now 34 degre

Length
Parsed:
URL: my_res/heater

| Payload: Heater - Toggl
tart to simulate the heater process
Heater is not useful for this situation !
Done

Watch the alarm !

received uip_datalen=49
[2001: 0:5307:3110:0000:0000:0000:b468]:5683

v, t2, tkLe, c 69, mid 52243
, te, tkle,ci1, nid 52243
Received ACK

Received #9 (43 bytes)
|The temperature resource is now 34 degree.

Figure 3.15: Extreme temperature in the second scenario

Third Scenario
1) Collecting acceleration information:

By the accelerometer sensor, we can collect the acceleration in three dimension. To sim-
plify, we choose the value of x dimension as the constraint.

Also we need add several global variables in extern_var.h.
2) Testing the Alarm:

When the value of acc_xis larger than 90 or smaller than 90, or the difference of acceleration
between two continuous collection is larger than 8, the alarm will be on to remind the driver
be calmer.

IDP packet received!
andle_incoming_data(): received uip_datalen=37
UDP datagram from: [2001:6660:5307:3110:6000:0000:6000:b179]:5683 9000:0000:b468] : 5683

oming_data(): received uip_datalen=18
UDP datagram from: [2001:0660:5307:3110:6000:0000:0000:b468]:5683
: 18
ved bv alarn : -1000 ed: v 1, t 2, tkL o, c 69, mid 52240
_: -87, -10, -1007
d by alarm : -87

K

9 (12 bytes)
009-- - Alarns and Operators-----------

received uip_datalen=26
datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683

ng_data(): received uip_datalen=37 v 1, t 2, tkl @, c 69, mid 52241
UDP datagram from: [2001:6660:5307:3110:6000:0000:6000:b179]:5683
Payload: The ALARM is ON 1!

Received ACK

ved by alarm : -1000
ved by alarm : -91, -8, -1009
in x dimension is received by alarm : -

prt s HHHHHHHARRY
JritAcceleration#as SHHRALARM#H#H 311 H :b4e6: : 5683
prt s HHHHHHHARRY
JUP~ PacKeT TeCetvedT received
andle_incoming_data(): received uip_datalen=39 oming_data(): re(eived uip datalen-18

Parsed: v 1, t 0, tkl 0, c 1, mid 52242
URL: sensors/accel

ng_data(): received uip_datalen=37
UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683

handle_inconing_data(): received uip_datalen=24
receiving uop datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683

by alarm : 0
emperatur ived by alarm : -1000 Parsed: v 1 t 2, tkl @, c 69, mid 52243
pccleratio ved by alarm : -89, -8, -1008 URL:

Last accleration in x dimension is received by alarm : -91 Payload: The ALARM is OFF

\C

Figure 3.16: Implementation of the third scenario

3.A.3. ADDING COAP RESOURCES

In the above description, we have already give some displays of new resource. To conclude,
we have added the following resources:

1. res_heater: Temperature Controller in the second scenario
2. res_switch: Light switch in the first scenario

3. res_new_alarm: For all three scenario

4. res_new_temperature: Simulating the temperature sensor

Note that, after add the resources, we also need to activate them and add commands to
calling them. Here we explain one of the most important resource ALARM.

In the alarm resource, all extern global variables are called and calculated in order to define
the signal of alarm. In all these three scenarios, no matter which one constraint is not

14

satisfied, the alarm should be the ON state.

static void
es_get_handler(void *request, void *response, uint8_t *buffer, uinti6_t preferred_size, int32
t *offset)

printf("Lig i alarm : %d\n",light_info);

printf("T i m : \n",temper_info);

printf("A i alarm : %d, %d, %d\n",acc_x, acc_y, acc_z);
const char *len

int alarm_info = 8;

if(acc_x_old ==0){
acc_x_old =

printf("Last accleration in x dimension is received by alarm : %d\n",acc_x_old);

if(light_info ==1){
printf(
printf(
printf("#
alarm_info

if(temper_info =30 || (temper
printf(
printf(
printf("#
alarm_info

1
int dif = acc_x - acc_x_old;

if(acc_x = 90 || acc_
printf("#
printf(
printf("#
alarm_info

}

if(alarm_info == 8){
R set_header_content_type(response, REST.type.TEXT_PLAIN); /* te
efault, h hi *f
snprintf((cha X_CHUNK_SIZE,"The ALARM is OFF \n");

Jelse{
ader_content_type(response, REST.type.TEXT_PLAIN); /* te

snprintf((cha X_CHUNK_SIZE,"The ALARM i

Figure 3.17: Example: New Alarm Resource

3.B. SIMPLE IMPLEMENTATION OF HTTP CLIENTS

To implement a HTTP client, we need to add one more thread that start the client process in
the code of http_sever.c. We need to set the IP address of the server to collect the message.

Then because it is difficult to add resources, we only add the light sensor into the code and
try to build the communication between the http client and http server and collect the light
information. Here is the implementation.

4. PERFORMANCE EVALUATION: COMPARISON OF COAP AND
HTTP

The performance of CoAP is very good and fluent, it is easy to implement basic functions
using less data. Here we would like to discuss more about the comparison of CoAP and

15

comasica@grenoble: ~

XHHF) RIEE) BB(V) BRE) LT FEH)

Platform starting in 1...
Got
[in clock_init() DEBU ting systick timer at 106Hz

T-LAB Web server
:3110::b468] host 2001:660:5307:3116: :b468 port 80 path /

Platform starting in 1...
Got
[in clock_init() DEBU ting systick timer at 106Hz
T-LAB Web server'
:3110::b468] host 2001:660:5307:3110::b468 port 80 path

TCP packet r d1

HTTP socket closed, 20 bytes received
Closed

TCP packet received!

000
TCP packet received!

Figure 3.18: Example: HTTP Server/Client nodes

HTTP.
At first, to compare CoAP and HTTP, we need understand the code.

1) The difference of the protocol level is that CoAP uses UDP and HTTP uses TCP. We can
easily get this difference by the code or the output of the server.

if UIP I
process:
endif

while(1) {
switch(*uip_next_hdr){

/* TCP,
printf(
to tep_input;

* f

UIP_PROTO_UDP:
/* UDP, for
printf(

)to Lcmp6_input;
> UIP_PROTO_HBHO:

Figure 4.1: UDP & TCP

2) Both architectures support the combination of server and client on the same node. We
have verify this by the above implementations.

3) Actually HTTP has the Synchronous Communication. We can tell this by watching the

16

output of server node and client node. TCP protocol follows the way of synchronous com-
munication.

4) HTTP is more complex and has more overhead. To verify this, we need to balance the
packet transmission. For HTTP, there are some other parts of other transmission which
need to be removed, but the CoAP should send only light sensor information to keep same
as HTTP(in this case).

Note that, we should deploy the CoAP server/client to both nodes this time.

~C
comasic4@grenoble:~$ nc m3-96 20000

666 5307:3110: 0060 : 0000:0000:b468] : 5683

s S (GH S2250) Platform starting in 1..

co!

[in clock_init() DEBUG] Starting systick timer at 106Hz
Starting 'Erbiun Exam rver' 'Erbiun Example Client

Starting CoAP-18 rec

Starting Erbium Example Server

PAN ID: 0x0001

uIP buffer: 1560

LL header: o

Platform starting in 1...
Go!
rting systick timer at 100Hz
e Server' 'Erbium Example Client'

uIP buffer: 1500 4
LL header: 0 N
Compare with HTTP
i 60:5307:3110:0000: 0000:0000:ba68] : 5683
Requested #8 (MID 24575)
e UDP packet received!
o ;gégggn.oooo.onoo.b4oa] ERSEES handle_incoming_data(): received uip_datalen=34
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b179]:5683
Length: 34
Parsed: v 1, t 0, tkl @, c 1, mid 52238
URL: sensors/light
payload: Light - Toggle!
The real light value: 6
Test for the model

received!
handle_inconing_data(): received uip_datalen=7
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683
Length: 7
Parsed: v 1, t 2, tkl @, c 69, mid 52238
URL:

Payload: @ LIGHT VALUE : 0

The light is off, GOOD STATE
UDP packet received!
handle_incoming_data(): received uip_datalen=34
receiving UDP datagram from: [20801:0660:5307:3110:0000:0000:0000:b468]:5683
Length: 34
Parsed: v 1, t 0, tkl ©, c 1, mid 24575
URL: sensors/light
Payload: Light - Toggle!
The real light value: ©
Test for the model
LIGHT VALUE : ©
The light is off, GOOD STATE
UDP packet received!
handle_incoming data(): received uip_datalen=7
receiving UDP datagram from: [2001:0660:5307:3110:0000:0000:0000:b468]:5683
Length: 7
Parsed: v 1, t 2, tkl @, c 69, mid 24575
URL:
Payload: @
Received ACK
Received #0 (1 b

comasicaggrenoble:~$ []

Figure 4.2: Example: Implementation with only collecting light information

5. CONCLUSION

For now, the main three functions have been realised by our architecture. Although there
are still some details need to be discussed and practiced, I believe this kind of IoT applica-
tion Medicine-Guardian will make big differences in the future !

6. BIBLIOGRAPHY

[1] https://consumermedsafety.org/tools-and-resources/insulin-safety-center/storage-of-
insulin

[2] https://www.pfizer.com/news/hot-topics/covid_19_vaccine_u_s_distribution_fact_sheet

17

	Overview
	Definition and introduction of the assumed IoT application

	Architecture of the system
	The functions implemented
	Servers and clients installed

	Demo of Medicine-Guardian
	Add experiments
	Implementation of CoAP Clients
	CoAP clients on the Front-end
	CoAP clients on the sensor node
	Adding CoAP resources

	Simple Implementation of HTTP Clients

	Performance evaluation: Comparison of CoAP and HTTP
	Conclusion
	Bibliography

