
INSTITUT POLYTECHNIQUE DE PARIS

Final Project using FIT/IOT Lab
Wireless

Tianchi Yu

September 5, 2023

1. OVERVIEW

Recent years, with the development of IoT technique and the industrial automation, using
sensors to capture the environment and connecting things with network are common and
popular ways to make the industrial processes safe and efficient, to make our life conve-
nient. Abundant IoT applications are implemented in various kinds of scenarios, here in
this project, I propose one IoT application working on the safety of sensitive cargo during
transportation.

1.A. DEFINITION AND INTRODUCTION OF THE ASSUMED IOT APPLICATION

Food and medical supplies often require temperature and humidity control during storage
and transportation. In order to facilitate control, logistics companies use sealed containers
with environmental controls. These containers are equipped with sensors that will send
status reports to the central network to monitor these containers to control humidity and
temperature. If there is a problem with the environment inside the container, if a leak in
the sealed container is found, the sensor will immediately send an alarm to the central
network to take appropriate measures. The use of the Internet of Things can reduce the
deterioration of sensitive goods and prevent pollution.

It’s a very important application according to the scope of using, and also a very prospective
application for different levels of security. For example, because insulin drugs have higher

1



requirements for the delivery environment than ordinary drugs, UNOPENED insulin is best
stored inside the fridge [2° to 8°Celcius (36° to 46°Fahrenheit)]. Heat makes insulin break
down and will not work well to lower your blood sugar. Also, if insulin is frozen(lower than
0°Celcius), do not use even after thawing. Because freezing temperature will break down
the insulin and then it will not work well to lower your blood sugar. Then the entire process
needs to be accurately controlled at 2-8°C, and real-time temperature monitoring is critical.
Insulin is also very sensitive to sunlight, indoor lights.[1]

Another example is the COVID-19 VACCINE by Pfizer. The vaccine transport, storage and
continuous temperature monitoring have extreme constraints. For example, there are three
options for storage: ultra-low-temperature freezers, which are commercially available and
can extend shelf life for up to six months; the Pfizer thermal shippers, in which doses will
arrive, that can be used as temporary storage units by refilling with dry ice every five days
for up to 30 days of storage; refrigeration units that are commonly available in hospitals.
The vaccine can be stored for five days at refrigerated 2-8°C conditions.[2]

To be more precise and describable, we set the scenario as a medical drug delivery vehicle
in motion, where the drug need to be maintained at a strict interval of temperature and sev-
eral other conditions, which we will talk about later in the architecture. The IoT application
is named Medicine-Guardian.

2. ARCHITECTURE OF THE SYSTEM

2.A. THE FUNCTIONS IMPLEMENTED

Here I provide several automation functions of Medicine-Guardian, which implement three
different scenarios for several medicines on the delivery vehicle:

1) Collecting light information and calling the alarm when the light is on. Once we get
the signal of alarm for light, switch the states of lights(turn off the light).

Corresponding scenario: Supposing that there is one drug that need one strict light con-
straint of darkness, it cannot suffer from lightness.

2) Collecting temperature information information. If the temperature is >8°C or <2°C,
turn on the heater(temperature controller) until the temperature arrives 5. However, if
there is the temperature is extremely low or high (<0°C or > 30°C), or no heater could be
used, send alarm to the monitor. To make this scenario more interesting, we will add more
details for the heater at the part of implementation.

Corresponding scenario: Supposing that there is one drug that the best storage temperature
is between 2 and 8. If the temperature is lower than 0 or higher than 30, the drug will be
useless.

3) Collecting accelerator information, and sending alarm if accelerator sensor has a great
value or it makes a great change in short time period.

Corresponding scenario: Supposing that there is one drug that cannot accept the shaking,

2



we need to avoid the possible violent variation of velocity.

2.B. SERVERS AND CLIENTS INSTALLED

In this project, we set two kinds of clients: on the front-end and on the sensor node. To
realise the communication, we also need one server on the sensor node. In the experi-
ment, we reserve some M3 nodes on the Grenoble site, and set them up with flashing two
firmwares nodes. Also, to compare the difference between HTTP and COAP, we can access
nodes over HTTP over IPv6 from the SSH frontend by using a Contiki tunslip6 bridge and
launch HTTP server or launch requests on a CoAP Contiki Erbium server implementation.

3. DEMO OF MEDICINE-GUARDIAN

To give a full view of the demo, we offer the code of the CoAP server/client and the HTTP
server/client and other files needed.

3..1. ADD EXPERIMENTS

We build a test bed with 3 sensor nodes with Architecture m3 (at86rf231) of Grenoble site,
named "comasic4";

Figure 3.1: Test Bed

Basic processes:

Compile firmwares on SSH front end;

3



Figure 3.2: Example: flash CoAP firmare

Choose an available IPv6 prefix for the site you are experimenting on. For example in
Grenoble testbed : we choose 2001:660:5307:3110::/64

Figure 3.3: Get BR address

Choose one node in the nodes list to implement the Border Router (BR) node - here we
choose node m3-95

Start tunslip6 on the SSH frontend
Deploy the Border Router (BR) node on selected node using the CLI tool iotlab-node.

Then we need to choose one node and wait for deploying: build HTTP server - simple IPv6
node or IoT-LAB version of CoAP Erbium server;
FOR HTTP
Deploy one HTTP server node (here node 96).
FOR COAP

4



Figure 3.4: Deploy Border Router

Choose one CoAP server node(here node 96).

For the server/client on sensor node, we need deploy the server and client separately on
two nodes.

Note that, every time we change the code or add resoureces, we need to compile for iotlab-
m3 target and update the node.

For now, we have a basic environment for the experiment. Then we will implement the
three functions(mainly realized by CoAP).

3.A. IMPLEMENTATION OF COAP CLIENTS

3.A.1. COAP CLIENTS ON THE FRONT-END

For this experiment, we only need two nodes actually, one for the border router and another
for the CoAP server. To make the whole test consistent, we still choose three nodes, while
only two of them are used. We want to implement the first function by this method, which
means we want to collect the light information by the front-end and test the alarm when
the light is on and activate the command to turn the light off.

First Scenario

At first, we need to deploy the Border Router node and CoAP server node. We choose m3-95
and m3-96 separately. Then use "aiocoap-client coap://[2001:660:5307:3110::b468]:5683/XXX/XXX"
command by the client(front-end), we can get the information from server.

To realise the first function implemented, we need to do the following steps:

1) Collecting light information:

Figure 3.5: Some extern variables

5



First, make sure that we have the "light" resource, and extern it in the CoAP server code,
and activate the light sensor. We add one global variable in the extern_variable.h to record
the value of light by the server.

Because the real state of light is always off(the value of light_info is always 0), we need to
simulate the situation when the light becomes on. So I changed the code of res_light.c to
control the value of light. By using a random integer, we set the light on when the integer is
a multiple of 5. So we can collect the light information and get the state of light.

Figure 3.6: Light sensor

As the code above in the res_light, we simulate the signal of light. Because in the real case,
the light could be always turned off, we couldn’t see the difference. The signal of light stands
for the state of light. Notice that, once the light is turned on, it has to be turned off by calling
the res_switch resource. It means if we don’t use another resource to change the state, the
value of light_info will always be 1;

2) Testing the alarm:

When the light is on, we need to test the alarm and we have a clear information that there is
an alarm for light ! The command is "aiocoap-client coap://[2001:660:5307:3110::b468]:5683
/my_res/new_alarm"

3) Turning off the light

Once we get the information of alarm, the workers will know the light of the package is
turned on and unacceptable. Then the next step is to turn the light off manually. Here, we
add one resource res_switch, it could turn off the light when we ask it by the command.

6



Figure 3.7: Collecting light information

7



Figure 3.8: Testing the alarm and turning off the light

3.A.2. COAP CLIENTS ON THE SENSOR NODE

To make it clearly, we always set the m3-96 as the CoAP server and deploy the client on the
node of m3-97.

Figure 3.9: Deploy client and server CoAP

First Scenario

To explain: We also implement this scenario by the CoAP clients method. We only display
the result for this scenario here.

Second Scenario

The heater in this experiment is not only used for heat the drug. Actually, it stands for
temperature. To simplify the situation, the heater can adjust the temperature directly to
5°C if the temperature is between 0 and 2 or between 8 and 20. And the heater can only be
used for once, which makes sense. Because if the temperature keep going wrong even with

8



(a) pic1.good state of light

(b) pic2.bad state of light

Figure 3.10: Light function implementation

9



Figure 3.11: Received by client

10



the heater during the transportation, there is no way to add one more heater to control the
temperature.

If there is the temperature is extremely low or high (<0°C or > 30°C), send alarm to the
monitor, and the drug will be useless.

1) Collecting temperature information information:

Firstly, we need to add the temper_info as the global variable to record the temperature
information. Note that, set the initial value of temper_info as -1000 is to sign the initial
state, which will not cause the alarm on.

Notice that in grenoble platform, the sensors don’t have the capacity of collect tempera-
ture. Here we offer two options, one is using another available sensor who can capture one
feature(for example, pressure) as the value of temperature, another option is creating self-
resource and create the feature of temperature by ourselves. The first method will take the
similar process as the first scenario, then we decide to use the second method.

We create the "new_temperature" resource, which will create the value of temperature ac-
cording to some logic defined.

1. The initial temperature falls down into the 2-8.

2. Set a possible noise by the random integer and some hash methods, to decide the varia-
tion of the temperature.

3. For the following collection, the temperature will inherit the previous value + some noise.

2) Using Heater:

The client node will decide whether using heater every time it collects temperature infor-
mation. When the temperature is out of normal interval, the heater will work and adjust the
temperature. However when the temperature keeps going worse or it becomes extremely
high or low, the heater will be useless, also the drug.
As we have discussed, the heater resource is created as following:

3) Testing the Alarm:

The client node will test the alarm every time it collects temperature information. If the
heater could control the situation, it keeps calm. Instead, the alarm will be on.

11



Figure 3.12: Self-defined temperature sensor resource

Figure 3.13: Heater Resource

12



Figure 3.14: Heater works for second scenario

Figure 3.15: Extreme temperature in the second scenario

13



Third Scenario

1) Collecting acceleration information:

By the accelerometer sensor, we can collect the acceleration in three dimension. To sim-
plify, we choose the value of x dimension as the constraint.

Also we need add several global variables in extern_var.h.

2) Testing the Alarm:

When the value of acc_x is larger than 90 or smaller than 90, or the difference of acceleration
between two continuous collection is larger than 8, the alarm will be on to remind the driver
be calmer.

Figure 3.16: Implementation of the third scenario

3.A.3. ADDING COAP RESOURCES

In the above description, we have already give some displays of new resource. To conclude,
we have added the following resources:

1. res_heater: Temperature Controller in the second scenario

2. res_switch: Light switch in the first scenario

3. res_new_alarm: For all three scenario

4. res_new_temperature: Simulating the temperature sensor

Note that, after add the resources, we also need to activate them and add commands to
calling them. Here we explain one of the most important resource ALARM.

In the alarm resource, all extern global variables are called and calculated in order to define
the signal of alarm. In all these three scenarios, no matter which one constraint is not

14



satisfied, the alarm should be the ON state.

Figure 3.17: Example: New Alarm Resource

3.B. SIMPLE IMPLEMENTATION OF HTTP CLIENTS

To implement a HTTP client, we need to add one more thread that start the client process in
the code of http_sever.c. We need to set the IP address of the server to collect the message.

Then because it is difficult to add resources, we only add the light sensor into the code and
try to build the communication between the http client and http server and collect the light
information. Here is the implementation.

4. PERFORMANCE EVALUATION: COMPARISON OF COAP AND

HTTP

The performance of CoAP is very good and fluent, it is easy to implement basic functions
using less data. Here we would like to discuss more about the comparison of CoAP and

15



Figure 3.18: Example: HTTP Server/Client nodes

HTTP.

At first, to compare CoAP and HTTP, we need understand the code.

1) The difference of the protocol level is that CoAP uses UDP and HTTP uses TCP. We can
easily get this difference by the code or the output of the server.

Figure 4.1: UDP & TCP

2) Both architectures support the combination of server and client on the same node. We
have verify this by the above implementations.

3) Actually HTTP has the Synchronous Communication. We can tell this by watching the

16



output of server node and client node. TCP protocol follows the way of synchronous com-
munication.

4) HTTP is more complex and has more overhead. To verify this, we need to balance the
packet transmission. For HTTP, there are some other parts of other transmission which
need to be removed, but the CoAP should send only light sensor information to keep same
as HTTP(in this case).

Note that, we should deploy the CoAP server/client to both nodes this time.

Figure 4.2: Example: Implementation with only collecting light information

5. CONCLUSION

For now, the main three functions have been realised by our architecture. Although there
are still some details need to be discussed and practiced, I believe this kind of IoT applica-
tion Medicine-Guardian will make big differences in the future !

6. BIBLIOGRAPHY

[1] https://consumermedsafety.org/tools-and-resources/insulin-safety-center/storage-of-
insulin

[2] https://www.pfizer.com/news/hot-topics/covid_19_vaccine_u_s_distribution_fact_sheet

17


	Overview
	Definition and introduction of the assumed IoT application

	Architecture of the system
	The functions implemented
	Servers and clients installed

	Demo of Medicine-Guardian
	Add experiments
	Implementation of CoAP Clients
	CoAP clients on the Front-end
	CoAP clients on the sensor node
	Adding CoAP resources

	Simple Implementation of HTTP Clients

	Performance evaluation: Comparison of CoAP and HTTP
	Conclusion
	Bibliography

