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Abstract7

A Smart Contract is a program that is executed by every node participating in a blockchain. To8

account for the computational cost of this execution, a smart contract consume gas, an abtract9

resource purchased by the users of the blockchain. They consume a lot of gas, an abstract resource10

purchased through cryptocurrency. There is therefore economic incentives to reduce gas consumption.11

Michelson is a stack-based, strictly typed language in which Smart Contracts of the Tezos blockchain12

are written to ensure the safety of the Tezos blockchain. This report implements a blackbox optimizer13

for Michelson programs based on S-metaheuristics.14
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1 Introduction22

1.1 Smart Contracts23

1.1.1 What is a Blockchain?24

A blockchain is a type of database. It differs from a typical database in the way it stores25

information. Blockchains store data in blocks that are then chained together. As new data26

comes in it is entered into a fresh block. Once the block is filled with data it is chained onto27

the previous block, which makes the data chained together in chronological order. Arranging28

transactions in chronological order prevents double-spending, which is required by financial29

accounting.30

Cryptocurrencies of all types make use of distributed ledger technology known as block-31

chain. Blockchains act as decentralized systems for recording and documenting transactions32

that take place involving a particular digital currency. Put simply, a blockchain is essentially33

a digital ledger of transactions that is duplicated and distributed across the entire network34

of computer systems on the blockchain. Each block in the chain contains a number of35

transactions, and every time a new transaction occurs on the blockchain, a record of that36

transaction is added to every participant’s ledger. The decentralised database managed by37

multiple participants is known as Distributed Ledger Technology (DLT).38

Tezos39

Tezos [3] is a decentralized, open-source Proof of Stake (see Note 1) blockchain network and40

it supports Smart Contracts and tez crypto-currency (XTZ). Its characteristic is to natively41

support protocol updates without hard forks. The Tezos blockchain environment is based on42

https://www.ip-paris.fr/
https://www.nomadic-labs.com/
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OCaml. All the programs in this report are also implemented in OCaml with the help of43

some tools in the Tezos codebase.44

I Note 1. Proof of Stake (PoS) protocols are a class of consensus mechanisms for blockchains45

that work by selecting validators in proportion to their quantity of holdings in the associated46

cryptocurrency. Unlike a Proof of Work (PoW) protocol, PoS systems do not incentivize47

extreme amounts of energy consumption.48

1.1.2 What is a Smart Contract?49

A Smart Contract is a computer agreement or program designed to spread, verify or execute50

contracts in an information-based way. Smart contracts in blockchain have the following51

characteristics: Rules are transparent, and data in the contract are visible to the outside;52

All transactions are publicly visible, and there will be no false or hidden transactions, thus53

cannot be modified.54

Smart Contracts are often regarded as a powerful application of blockchain technology.55

These contracts are actually computer programs that can monitor all aspects of the agreement.56

When the conditions are met, the Smart Contract can be fully self-executing and self-enforcing.57

These tools provide safer and more automated alternatives than traditional contract law, as58

well as faster and cheaper applications than traditional methods.59

Michelson60

The Tezos blockchain has a rather low-level bytecode Smart Contract language called61

Michelson [2]. Michelson is a domain-specific language that is both stack based and strongly62

typed. This specification gives a detailed formal semantics of the Michelson language and a63

short explanation of how Smart Contracts are executed and interact in the blockchain.64

1.1.3 What is the Purpose of Gas?65

On the Tezos network, Michelson programs consume gas, which is an abstract resource66

designed to bound Smart Contract computation time and thus (amongst other things)67

incentivize efficient use of on-chain computation. Specifically, gas represents computational68

cost related to a transaction, an amount of gas is assigned to different instructions. The main69

goal of gas is to be a security measure against DoS (i.e. Denial-of-Service attack), because70

an unbounded execution would block nodes and wouldn’t allow the chain to move forward,71

so it offers liveness guarantee for blockchain network.72

1.2 Optimizing Gas Consumption of Smart Contracts73

The objective of this internship is to optimize Michelson Bytecode with respect to gas con-74

sumed. Specifically, we study super-optimization [6, 14] (finding global program optimizations75

which might be missed by a smaller and simpler search for local optimizations). We aim for76

an heuristics-based method using S-metaheuristics [15] to find the optimal bytecode in a77

fully blackbox way.78

1.2.1 Overview79

A Michelson program (e.g. Listing 1) can be seen as a series of instructions that are run in80

sequence, each instruction receives as input the stack resulting from the previous instruction,81

and rewrites it for the next one. Every Michelson program has two arguments, parameter82
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Listing 1 One Michelson Program
parameter int;
storage int;
code { DROP ; PUSH int 47; NEG ; PUSH int 84 ;

SWAP; SWAP ; DROP ; NIL operation ; PAIR }

Figure 1 Evolution of the stack

and storage, represented as a pair of values on the top of the stack before execution of the83

program.84

We present some basic examples about how Michelson programs execute. Instructions85

refer to Michelson primitives such as DROP, it means that drop the top element of the stack.86

PUSH instruction pushes a constant value of a given type onto the stack; NEG intends to87

negate a numerical value ; SWAP effects two nearby elements on the stack and swap their88

positions; NIL operation; PAIR is usually used at the end of one Michelson program, NIL89

is an opcode that adds an empty list of the specified type (e.g. operation) on top of the90

stack, and PAIR takes the two elements on top of the stack, creates a new pair containing91

these two elements, and pushes back the pair on the stack.92

This basic overview for Michelson language helps us understand that the program in the93

Listing 1 can be optimized. For example, SWAP; SWAP swaps two values in the stack twice,94

which means there is no change. There are values in the stack directly dropped by DROP95

instruction. Therefore, the effect of original program should be equivalent to directly PUSH96

int -47, which is the optimal program we expect to have. Fig.1 shows the evolution of the97

stack.98

Super-optimization is an idea to produce perfectly optimal code, in place of the code99

we currently have. It is typically done via a brute-force search of every possible instruction100

sequence, checking whether it performs the desired actions if it is the optimal one. This is101

costly, and thus impractical for general-purpose compilers. Thus we aim to explore the huge102

search space by building an heuristics-based method with S-metaheuristics also known as103

Single-solution based metaheuristic algorithm.104

S-metaheuristics105

When only one solution is being developed mathematically, and transformed by way of106

various stochastic or deterministic processes, the process is classified as an S-metaheuristic107

[7, 15]. S-metaheuristics can be advantageously used to solve such optimization problems. A108

wide range of heuristics exists (Hill Climbing, Random Walk, Metropolis Hasting [13] and109

Simulated Annealing, etc.). They iteratively improve a candidate solution by testing its110

“neighbors” and moving along the search space. Because solution improvement is evaluated111
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Figure 2 Iterated Local Search

by the objective function, it is said to guide the search.112

Iterated Local Search (ILS)113

Iterated Local Search [10] is based on building a series of local optimal solutions by disturbing114

the current local minimum and applying local search after starting from the modified solution.115

Some S-metaheuristics are likely to fall into local optima, so the result depends on the116

initial input selected. Iterative local search fixes this issue by looking for iterations and the117

ability to restart from the best solution seen before. Note that ILS is configured by another118

search heuristic (for us: Hill Climbing). Once the local optimal value is found through this119

edge search, ILS will disrupt it and use the perturbed solution as the initial state of the120

edge search. At each iteration, ILS also records the best solution found. Unlike most other121

S-metaheuristic, if the research follows a misleading path, ILS can restore the best solution122

yet to start over from a healthy state.123

1.2.2 Why Optimizing Contract is Important?124

Smart Contracts that execute on the blockchain are critical. As we have discussed, gas costs125

by Smart Contracts are meant to equate to computation, e.g. if one instruction takes twice126

as much computation time/resources, it should consume twice as much gas, hence reducing127

gas consumption allows reducing paid fees. Thus developers must pay meticulous attention128

to the gas spent by their Smart Contracts, we thus need optimization tools that must be129

capable of effectively reducing the gas consumed by the Smart Contracts.130

1.2.3 State of the Art131

There are currently some research work on the super-optimization of Smart Contracts and132

most of them work on the Ethereum blockchain. E. Albert et al. [5] present an approach for133

super-optimization of Smart Contracts based on Max-SMT(Current Maximum Satisfiability134

[16]) which has two main phases : extraction of a stack functional specification from the basic135

blocks of the Smart Contract and then synthesis of optimized blocks by means of an efficient136
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Max-SMT encoding. J. Nagele and M.A. Schett [11] superoptimize EVM (i.e. Ethereum137

Virtual Machine) bytecode by encoding the operational semantics of EVM instructions as138

SMT formulas and leveraging a constraint solver to automatically find cheaper bytecode.139

Considering only super-optimization, Eric Schkufza et al. [14] of Stanford University140

formulate the loop-free binary super-optimization task as a stochastic search problem. They141

encode competing constraints of transformation correctness and performance improvement142

to cost function, then use a Markov Chain Monte Carlo sampler to explore the space of all143

possible programs to find one that is an optimization of a given target program.144

1.3 This Internship145

1.3.1 Nomadic Labs146

I was able to complete this internship in the team of Nomadic Labs, a research and development147

company, which contributes in particular to the implementation of the software core of the148

Tezos blockchain, and to the development of the language of the associated smart-contracts,149

Michelson.150

1.3.2 Contributions151

The approach presented by this report is basically split into three phrases: (i) sampling, (ii)152

search, (iii) proof.153

Sampling154

To apply S-meraheuristics method, we need a cost function that aims to guide the search.155

To establish this cost function, we choose to take inputs-outputs relationships as arguments156

of it. Generation of inputs-outputs pairs is realized by a Monte Carlo-based sampler and157

a Michelson interpreter. The use of a sampler is needed, because manually defining the158

inputs for each contract is at best impractical. There is an existing value sampler in Tezos159

codebase and we adapt this sampler to generate the corresponding input value for each160

contract randomly.161

Search162

The search starts from the empty program of Michelson language. Each program synthesized163

is scored by its distance of outputs with the expected one. Lower distance means higher164

score and a distance of zero is highly expected to obtain.165

In my internship, ILS algorithm is implemented for this search process. The best programs166

found by Local Search are perturbed to more possible programs and applied Iterated Local167

Search. All programs with zero distance and less gas consumed are considered as candidates168

waiting for the proof of semantic equivalence with the original program.169

Proof170

Candidates found by the last step cannot be taken as correct solutions (i.e. optimized171

programs), because it is clear that having not enough inputs-outputs pairs can sometimes172

generate a program that is not equivalent, hence we implement Translation Validation (as173

defined below) to prove semantic equivalence between the source program and the candidate174

optimized program.175
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I Definition 2. Translation Validation [12] is a technique for ensuring that the target code176

produced by a translator is a correct alternative representation of the same computation.177

Rather than verifying the translator itself, Translation Validation validates the correctness of178

each translation, generating a formal proof that it is indeed a correct [9].179

Translation Validation is proved by Z3 [4] SMT Solver in this report. Z3 is an efficient180

SMT Solver freely available from Microsoft Research. It is usually used in various software181

verification and analysis applications. Working as an SMT Solver, it is able to decide182

the satisfiability of formulas in a variety of theeories. We choose this tool to achieve our183

requirements. With its OCaml API, we can apply it in Tezos ecosystem.184

I Note 3. Satisfiability modulo theories (SMT) generalizes boolean satisfiability (SAT) by185

adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other186

useful first-order theories [8].187

For the whole tool built at the end, the input and output should be Michelson programs,188

the only difference is that the output program consumes less gas. The execution results show189

in the Section 5, where we find several optimal programs for different original programs. On190

the other hand, the tool is still limited by its efficiency. For some complex Smart Contracts,191

the optimization process may take a lot of time, which should be able to optimize by a better192

implementation of S-metaheuristics.193

2 Sampler : Generation of Inputs/Outputs Relationships194

In this section, we parse Michelson programs and interpret them to obtain a sets of inputs-195

outputs pairs. It can help synthesize optimized Michelson contracts. The program synthesized196

by the search algorithm takes the generated input values as inputs, and it will be considered197

as a candidate only if the output values are consistent with the expected output values.198

2.1 Parse Michelson Programs199

The concrete syntax of Michelson is called as Micheline. Thus the abstract syntax tree200

of the Michelson program is constructed by (’l,’p) node in Micheline, where ’l stands201

for location and ’p stands for primitives of node. The definition of this type is in Listing202

2. And Listing 3 shows an example of structure of a AST for a Michelson program. In203

this structure, K_parameter and K_storage are primitives separately for two arguments of204

Michelson programs. And T_int is a primitive for type of integer.205

Micheline206

Micheline [1] is a data format comparable to JSON, XML, S-expressions, and YAML. Its207

main purpose is to serve as the concrete syntax for the Michelson language. The structure of208

a Micheline node is simple, it is a node can only be one of the five following constructs: An209

integer in decimal notation; A character string delimited by the double quotation character210

"; A byte sequence in hexadecimal notation prefixed by 0x; The application of a primitive211

to a whitespace-delimited list of nodes and annotations.; A sequence of nodes delimited by212

curly braces ( and ) and separated by semi-colons (;).213

2.2 Sampler Generation and Boundaries214

Using the script translator tool in Tezos codebase, we parse Michelson program to get types215

of parameter and storage arguments. Then these types of values are able to be generated by216



T. Yu 7

Listing 2 type of (’l, ’p) node
type annot = string list

type (’l, ’p) node =
| Int of ’l * Z.t
| String of ’l * string
| Bytes of ’l * Bytes.t
| Prim of ’l * ’p * (’l, ’p) node list * annot
| Seq of ’l * (’l, ’p) node list

Listing 3 AST of Michelson program
Seq

(0,
[ Prim (1, K_parameter , [Prim (2, T_int , [], [])] , []);

Prim (3, K_storage , [Prim (4, T_int , [], [])] , []);
Prim

( 5,
K_code ,
[ Seq

( 6,
[ Prim (7, I_NIL , [Prim (8, T_operation , [], [])] , []);

Prim (9, I_PAIR , [], []) ] ) ],
[] ) ] )

Michelson_value_sampler Module (see Appendix A.1). The size of values can be limited217

by bounds inside of the module of parameters.218

I Remark 4. The Michelson Sampler is able to generate a variety of types of value. But219

in this work, integers are considered as the most important types, as they are easy to be220

manipulated and observed, and also arithmetic operations of integers are very important221

part for transaction in Smart Contracts.222

2.3 Interpreter and Gas Consumed223

Once the input values are generated, we interpret Michelson program to get the output. We224

pair the input and output values one by one, combine them into a set of input and output225

relationships and store them in a json file.226

In addition, the interpreter (see Appendix A.2) also provides a function calculates the227

gas consumption of each Michelson program. This function is key to evaluate whether we228

indeed have optimized our original program. To compute the gas consumed, an initial global229

gas is set. We are able to obtain the remaining gas after each execution of programs. A230

simple subtraction returns what we want.231

I Remark 5. The Michelson program fed to the interpreter must be well-typed, otherwise it232

cannot be executed. Therefore, in the process of rewriting and verifying the program later,233

whether a Michelson program is well-typed or ill-typed needs to be discussed.234

2.4 Implementation and Examples235

The main tools used are Michelson parser, Michelson interpreter and Michelson Sampler.236

These three tools are respectively constructed by three modules of parse_parameters_storage,237
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Figure 3 Samping Process

michelson_value_sampler, michelson_interpreteur in my code [17]. Figure 3 shows the238

logical implementation of generation for inputs-outputs pairs.239

I Example 6. For the Michelson program in Listing 1, two inputs arguments are both240

integers, we are able to use our sampler tool to generate its inputs/outputs relationships and241

also calculate its gas consumed. An example of results of 10 pairs inputs/outputs is showed242

in Listing 4, and gas consumed is 10.875.243

3 Synthesis : Search Process244

In this section, we present how to rewrite and optimize the Michelson program in terms of245

preserved inputs-outputs relationships and its consumed gas. In actual work, the consumed246

gas is only used as the final judgment standard, and the consistency of the input and output247

relationship is a basic prerequisite for judging the qualification of the synthesized program.248

After these, we use Translation Validation (see Section 4) for our candidates to prove the249

programs are equivalent.250

3.1 Well-typedness251

The correct solutions have to be well-typed Michelson programs, while ill-typed programs may252

be generated during the search process. So we define the state of each node as Well_Typed253

or Ill_Typed and a type full_node (Listing 5) composed by this node and the state of this254

node. Based on the premise of the black box, the rewrite rules are the rules of randomly255

generating Michelson programs. Each node is randomly generated, which uses the program256

generated in the process is likely to be ill-typed. Nevertheless, it is very important to keep257

ill-typed nodes, because each node may be very close to our expected result.258
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Listing 4 Results
{ " samples ": {
"0" : {

"index ": "0",
" relation ": {

"input ": { " parameter ": "12" , " storage_i ": " -89" },
" output ": { " storage_o ": " -47" }

}
},
"1" : {

"index ": "1",
" relation ": {

"input ": { " parameter ": " -125" , " storage_i ": " -150" },
" output ": { " storage_o ": " -47" }

}
},
"2" : {

"index ": "2",
" relation ": {

"input ": { " parameter ": " -156" , " storage_i ": " -77" },
" output ": { " storage_o ": " -47" }

}
},

......

"9" : {
"index ": "9",
" relation ": {

"input ": { " parameter ": "-4", " storage_i ": "76" },
" output ": { " storage_o ": " -47" }

}
}
} }

Listing 5 type of full node (in OCaml)
type state = Well_Typed | Ill_Typed

type node = Michelson_value_sampler .node

type full_node = {n: node; st: state}
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Figure 4 Rewriting Process

3.2 Random Rewrite Rules259

We can interpret the process of rewriting as a search process. The termination signal of the260

search process comes from the satisfaction of the input-output relationships. The search space261

represented by the equivalent contract of a known Smart Contract is big, then S-metaheuristic262

would be the key to guide it to search faster and more effectively. As we have discussed,263

Iterated Local Search is implemented in our case.264

Basically, we have two filters after the searching or rewriting. One is the input-output265

relationships, only the programs that match relationships can become the candidates. Then266

we need to check if we consume less gas. Candidates that consume less gas will be kept. The267

output should be a set of candidates of Michelson programs consuming less gas, as some of268

them might not be semantically equivalent with original one because of limited number of269

inputs-outputs pairs.270

I Remark 7. Subsection 3.1 represents the importance of checking well-typedness of node.271

Thus at each step of mutation, we check the state of current node and score (see Subsection272

3.2.1) it.273

3.2.1 Scoring274

Each program is scored. The most important element is the distance between the program275

generated and the original program. There are many different ways of computing such276

distance, i.e. edit distance and log-arithmetic distance. Edit distance is one good way of277

quantifying how dissimilar two strings are to one another by counting the minimum number278

of operations required to transform one string into the other. But in all my executions,279

considering that outputs of our basic blocks in programs are numbers, arithmetic distance is280
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Figure 5 Modes of mutation

taken as the calculation approach (see Appendix A.3).281

For each program generated in the process, we need to calculate sum of arithmetic282

distances between outputs, with the same input values. The exact process is to feed all input283

values of the samples of inputs-outputs relationships that has been obtained in sequence284

into the well-typed program, interpret the program, and calculate the distance between the285

actual output value and the expected output value. For the ill-typed program, due to its286

inexplicably and non-compilability, we designed a reasonable interval of positive integers and287

randomly selected a value as its scoring basis(i.e. distance). The design and control of this288

interval will be discussed in Section 3.2.4.289

3.2.2 Mutation290

The definition of mutation in this article is the process of randomly modifying one node to a291

new node. Basically, there are two mode: insertion and deletion. These two modes occur292

with equal possibility. Specially, we add one more mode with small possibility to be chosen,293

which is taken as replacement. The reason for the third mode is as follows. PUSH is one of294

important primitives to be inserted or deleted from nodes, and it has a same probability of295

generation as other primitives. It is also more special than others because the value pushed is296

a random integer(in this report). So for each primitive PUSH and each value, its probability of297

generation is much smaller. To compensate for this, we add this additional mode to replace298

the instruction of PUSH *.299

For example, the demonstration in the Figure 5 is a basic mutation process. First,300

a tool that can randomly generate primitives within a limited range is established, then301

mutation mode will be chosen randomly from Add, Delete, R_Push. With high probability,302

this generated node will be randomly added or deleted at random position in the abstract303

semantic tree. It is also possible to replace the value to a random value after PUSH primitive.304

If there is no PUSH in the current node, it will randomly execution insertion or deletion.305
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Listing 6 Lookahead
...
let lookahead sol nbest max ctxt =

let rec aux sol n max =
match (n, max) with
| (0, _) | (_, 0) -> return [sol]
| (_, _) ->

(* loop for local search *)
loop sol 0 ctxt >>=? fun sol ’ ->
if sol ’. distance < sol. distance then

aux sol ’ (n - 1) (max - 1) >>=? fun remain ->
return (sol ’ :: remain )
(* match remain with

| [] -> Lwt. return [sol ’]
| _ -> Lwt. return (sol ’ :: remain )*)

else aux sol n (max - 1) >>=? fun remain ->
return remain

in
aux sol nbest max

in
...

Local Search306

Starting from the current node, the program can go through a one-step mutation to find307

a better program (closer distance) or a worse program (further distance). On this basis,308

starting from a node, it is allowed to "probe" a new node multiple times. At the same time, if309

a better node is found, that node will become a new starting point for detection and search310

for surrounding nodes(by multiple-mutation); all old distant nodes will be discarded. After311

enough attempts, only several best solutions will be retained. The above process is named312

lookahead (see Listing 6) in the program, which is also the critical part of Local Search.313

After the end of each Local Search, we sort out the best nodes obtained and collect314

them into a large set to guide the subsequent iterations. At the same time, select the best315

well-typed node and judge whether it is possible to end a round of search (i.e. if the distance316

is 0, it means that a candidate is found, and this round of search ends).317

3.2.3 Perturbation & Multiple-Rounds318

The search process contains multiple rounds and each round contains multiple perturbations.319

Perturbation avoids local optimal results, multiple possible initial nodes are provided, thus320

local search is performed on different initial nodes.321

As for the realization of perturbation, it is actually to execute multiple mutations randomly322

to the best local optimum node without detecting the content of the node, and then use it as323

the starting point of the Local Search.324

The above process is implemented in one round of search, but in practice, one round325

of search may not be able to find qualified candidates, so we may need multiple rounds of326

search. The meaning of multiple rounds of search is not only to repeat the above process,327

but also to optimize the initial node, so that the generation of a new program does not start328

with a blank program, but the best well-typed program in the last search. Multiple rounds329

of search will improve the accuracy of program synthesis, but it also means that more time330
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is consumed.331

3.2.4 Design and Control Interval of Distance for Ill-typed Nodes332

The explanation on why such a random number is chosen as the distance judgment of the333

ill-typed program is as follows. First of all, it is necessary to have a judgment mechanism.334

We need to guide the entire search process by comparing distances. The specific search335

process will be introduced in the next section. Secondly, during the search process it is hard336

to accurately judge the quality of an ill-typed program. It may or may not be a necessary337

part of the process of pointing to the expected result. Therefore, a given range of integers can338

give every node a chance to continue to evolve to a certain extent, until it finds a well-typed339

program and obtains an accurate distance value or it has a worse distances and is abandoned.340

Especially when the new well-typed program guided by ill-typed nodes has obvious better341

scores (closer distance), it shows that it has made very good progress after experiencing a342

lot of uninterpretable node evolution. The importance of distances of well-typed nodes is343

apparently higher than distances of ill-typed nodes, in terms of guide our search. This also344

means that without well-typed nodes, our search is purely random with no heuristic.345

According to this analysis and multiple experiments of executions, we give several basic346

rules for the design of this interval. All these rules are implemented in the code [17] of this347

work.348

1. The default initial bounds should have a high enough lower bound at least (also depending349

on the distance calculation method and the data size of the contract). Because our search350

starts from ill-typed node, if the random distance generated is too small, the search will351

lose the guide of scoring because it is hard to generate a well-typed node with a smaller352

distance at the beginning.353

2. Except default bounds, lower bound and upper bound should be set around the best354

well-typed node so far. Also the probability of ill-typed node generated having a better355

distance should be controlled under a low level, because too easy to choose ill-typed nodes356

leads to less guide for search.357

3. Every round of search should re-bound this interval based on the best solution found.358

Because if we keep two higher bounds, no ill-typed node will be kept.359

4. Inside of each round, every perturbation allows to re-initialize bounds temporarily. When360

the best local optimum node is well-typed, we decrease the bounds according to this node.361

If not, we increase both the lower bound and the upper bound, to avoid missing better362

well-typed nodes.363

5. Inside of each perturbation, every mutation doesn’t change the bounds. Unless a new364

better well-typed node occurs, the bounds decrease according to this node.365

3.3 Simplifying Candidates366

It is obvious that there are some simple ways to simplify a program. For example, two367

consecutive SWAPs are a very simple deterministic rewriting rule: if we read a program368

that contains two consecutive SWAPs, we can directly modify the program and delete these369

two SWAPs. There are many other examples, we can add them to the rewrite rules. For370

example, PUSH operation followed by a DROP, CDR followed by a DROP, etc., can be replaced371

by simpler instructions. These definite rewriting rules are taken as an important means to372

simplify candidates that we found through the above random search process, and reduce gas373

consumption.374
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Listing 7 Candidates after search
### initial program ###
parameter int;
storage int;
code {DUP ; CDR; SWAP ; DROP ; DUP ; ADD; NIL operation ; PAIR}
Cost : # consumed gas :10.2400000095

### solution ### N 0
{ parameter int ;

storage int ;
code { CDR ; DUP ; ADD ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :7.13499999046
Distance : 0.

### solution ### N 1
{ parameter int ;

storage int ;
code { CDR ; DUP ; ADD ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :7.13499999046
Distance : 0.
......
### solution ### N 4 0
{ parameter int ;

storage int ;
code { CDR ; DUP ; SWAP ; ADD ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :7.92499995232
Distance : 0.

3.4 Implementation and Examples375

We implement the process of exploring the graph generated by random rules, shown as Figure376

4. Two main modules named MUTATOR and RULES contain most part of search process (see377

Appendix A.4).378

Principles of search process379

Filter the candidates by preserving input-output relationships.380

Continue the exploration through the candidates by gas consumed.381

Stop when we cannot improve the score of the best candidate.382

Simplify candidates if we could.383

Here is an example of candidates found by our search process in Listing7. The first two384

solutions are qualified candidates because they consume less gas, while the N°40 solution385

will be removed.386
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Listing 8 Type of stack element (in OCaml)
type sk_element =

| Int of int
| Pair of sk_element * sk_element

Listing 9 Sort of stack element and stack
let int_recognizer = stringsymbol "Int"

let pair_recognizer = stringsymbol "Pair"

let int_cstrct =
Datatype . mk_constructor_s

!ctxt
"Int"
int_recognizer
[ stringsymbol "int "]
[Some int_sort ]
[1]

let pair_cstrct =
Datatype . mk_constructor_s

!ctxt
"Pair"
pair_recognizer
[ stringsymbol "car "; stringsymbol "cdr "]
[None; None]
[0; 0]

let sk_el_sort = Datatype . mk_sort_s !ctxt " sk_element "
[ int_cstrct ; pair_cstrct ]

let sk_sort = Z3List . mk_list_s !ctxt "stack" sk_el_sort

4 Translation Validation387

So far, we generate programs that meet the requirements of input-output relations and gas388

consumption through a random process, but there is no guarantee that these programs is389

semantically consistent with our original program. Translation Validation is presented in390

this section.391

4.1 Modeling Stacks and Encoding Instructions392

We translate source program A and target program B into logical formulas. With the393

semantically equivalent input stacks SA and SB, use SMT solver to check if it is possible394

that output stacks from A and B differ. If the generated formula is satisfiable, they are not395

semantically equivalent.396

A key element in our encoding is the representation of the stack and the elements it397

contains. In Z3, sort stands for a data type, and it has built-in integer sort and list sort,398

providing basic arithmetic methods. Based on this, we can process each stack into a Z3list of399

stack element sort. If we only consider Integer and Pair type of values in stack, we could400
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Listing 10 Examples of encoding instructions
...

j => s(0,j)
DROP(in j position ):

j + 1 => s(0,j+1) == tail s(0,j)
PUSH int 1:

j + 2 => s(0,j+2) == cons ( Int 1 , s(0,j+1) )
SWAP :

j + 3 => s(0,j+3) == cons ( head ( head s(0,j+2) ),
cons ( head s(0,j+2),

tail (tail s(0,j+2)) ) )
...

define a data type (in OCaml) as Listing 8.401

To implement this data type into Z3, we have to construct two constructors and create a402

new sort which stands for one stack element. And a stack sort would be a Z3list of stack403

element, as in Listing 9. By accessors defined in Z3, we are able to access the value of each404

Expr (i.e. General Expressions (terms) in Z3).405

We aim to express a stack after executing j instructions with j ∈ 0, ..., n_ins, where nins406

is the number of instructions. The expression of an abstractly defined stack type is treated407

as the initial stack before program execution, with symbolic expression s(i,0), where i is408

the index of program. Obviously, for two different programs, we have the first restriction:409

the initial stack is equivalent, expressed as s(0, 0) == s(1, 0).410

Secondly, we encode instructions of Michelson program by establishing functions of effects411

of instructions in each Michelson program on the stack, and the execution process of the412

program is the modification process of the stack. By manipulation of the stack, we can finally413

get a stack as output states. The process of encoding is expressed as an example in Listing:10414

To prove the equivalence of two Michelson programs, we need a second key constraint,415

that is, the output stack is inconsistent, expressed as s(i, j) == s(i′, j′). Putting these416

two key constraints and the contraints built during the stack manipulation into Z3 SMT417

Solver, as long as the ‘unsatisfiability’ is obtained, we can consider the two programs to be418

semantically equivalent.419

4.2 Examples420

This subsection shows some examples of Translation Validation. It presents that semantic421

equivalence can be proved by the results of Z3 SMT Solver. In the first two examples (see422

Listing 11,12), we offer two pairs of Michelson programs and the tool returns ’unsatisfiability’.423

This means that for the same input stack, it is not possible to generate distinct output stacks424

after interpretations for each pair of programs. However in the third example (see Listing 13),425

that pair of programs is not semantic equivalent, thus the result of Translation Validation426

also confirms that.427

With helps of Translation Validation, we are able to complete the last chain: the proof428

tool of this work.429
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Listing 11 Example 1
#### Program 0 ####
{ parameter int ; storage int; code {DROP; PUSH int 20; PUSH int 2;

PUSH int 3; DROP ; ADD ; NIL operation ; PAIR }}
initial stack :s_0_0
stack - s_0_1
constraint - (= s_0_1 (tail s_0_0 ))
stack - s_0_2
constraint - (= s_0_2 (cons (Int 20) s_0_1 ))
stack - s_0_3
constraint - (= s_0_3 (cons (Int 2) s_0_2 ))
stack - s_0_4
constraint - (= s_0_4 (cons (Int 3) s_0_3 ))
stack - s_0_5
constraint - (= s_0_5 (tail s_0_4 ))
stack - s_0_6
constraint - (let ((a!1 (+ (int (head s_0_5 ))

(int (head (tail s_0_5 ))))))
(= s_0_6 (cons (Int a!1) (tail (tail s_0_5 )))))

final stack :s_0_6

#### Program 1 ####
{ parameter int; storage int; code {DROP; PUSH int 18 ; PUSH int 4;

ADD; NIL operation ; PAIR }}
initial stack :s_1_0
stack - s_1_1
constraint - (= s_1_1 (tail s_1_0 ))
stack - s_1_2
constraint - (= s_1_2 (cons (Int 18) s_1_1 ))
stack - s_1_3
constraint - (= s_1_3 (cons (Int 4) s_1_2 ))
stack - s_1_4
constraint - (let ((a!1 (+ (int (head s_1_3 ))

(int (head (tail s_1_3 ))))))
(= s_1_4 (cons (Int a!1) (tail (tail s_1_3 )))))

final stack :s_1_4

#### Solver ####
(= s_0_0 s_1_0)
( distinct s_0_6 s_1_4)
(let ((a!1 (+ (int (head s_0_5 )) (int (head (tail s_0_5 ))))))

(= s_0_6 (cons (Int a!1) (tail (tail s_0_5 )))))
(= s_0_5 (tail s_0_4 ))
(= s_0_4 (cons (Int 3) s_0_3 ))
(= s_0_3 (cons (Int 2) s_0_2 ))
(= s_0_2 (cons (Int 20) s_0_1 ))
(= s_0_1 (tail s_0_0 ))
(let ((a!1 (+ (int (head s_1_3 )) (int (head (tail s_1_3 ))))))

(= s_1_4 (cons (Int a!1) (tail (tail s_1_3 )))))
(= s_1_3 (cons (Int 4) s_1_2 ))
(= s_1_2 (cons (Int 18) s_1_1 ))
(= s_1_1 (tail s_1_0 ))

unsatisfiable <------- means semantically equivalent
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Listing 12 Example 2
#### Program 0 ####
{ parameter int ; storage int; code {

DUP ;
CAR ;
SWAP ;
CDR ;
PUSH int 20 ;
ADD ;
PUSH int 20 ;
SUB ;
ADD ;
NIL operation ;
PAIR }}

#### Program 1 ####
{ parameter int; storage int; code {

DUP ;
CDR ;
SWAP ;
CAR ;
SUB ;
NIL operation ; PAIR }}

#### Solver ####
(= s_0_0 s_1_0)
( distinct s_0_9 s_1_5)
(let ((a!1 (+ (int (head s_0_8 )) (int (head (tail s_0_8 ))))))

(= s_0_9 (cons (Int a!1) (tail (tail s_0_8 )))))
(let ((a!1 (- (int (head s_0_7 )) (int (head (tail s_0_7 ))))))

(= s_0_8 (cons (Int a!1) (tail (tail s_0_7 )))))
(= s_0_7 (cons (Int 20) s_0_6 ))
(let ((a!1 (+ (int (head s_0_5 )) (int (head (tail s_0_5 ))))))

(= s_0_6 (cons (Int a!1) (tail (tail s_0_5 )))))
(= s_0_5 (cons (Int 20) s_0_4 ))
(= s_0_4 (cons (cdr (head s_0_3 )) (tail s_0_3 )))
(let ((a!1 (cons (head (tail s_0_2 ))

(cons (head s_0_2) (tail (tail s_0_2 ))))))
(= s_0_3 a!1))

(= s_0_2 (cons (car (head s_0_1 )) (tail s_0_1 )))
(= s_0_1 (cons (head s_0_0) s_0_0 ))
(let ((a!1 (- (int (head s_1_4 )) (int (head (tail s_1_4 ))))))

(= s_1_5 (cons (Int a!1) (tail (tail s_1_4 )))))
(= s_1_4 (cons (car (head s_1_3 )) (tail s_1_3 )))
(let ((a!1 (cons (head (tail s_1_2 ))

(cons (head s_1_2) (tail (tail s_1_2 ))))))
(= s_1_3 a!1))

(= s_1_2 (cons (cdr (head s_1_1 )) (tail s_1_1 )))
(= s_1_1 (cons (head s_1_0) s_1_0 ))

unsatisfiable <------- means semantically equivalent
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Listing 13 Example 3
#### Program 0 ####
{ parameter int ; storage int; code {DROP; PUSH int 20; PUSH int 2;
PUSH int 3; DROP ; ADD ; NIL operation ; PAIR }}

#### Program 1 ####
{ parameter int; storage int; code { PUSH int 18; DROP; DROP ;
PUSH int 4; NIL operation ; PAIR }}

#### Solver ####
(= s_0_0 s_1_0)
( distinct s_0_6 s_1_4)
(let ((a!1 (+ (int (head s_0_5 )) (int (head (tail s_0_5 ))))))

(= s_0_6 (cons (Int a!1) (tail (tail s_0_5 )))))
(= s_0_5 (tail s_0_4 ))
(= s_0_4 (cons (Int 3) s_0_3 ))
(= s_0_3 (cons (Int 2) s_0_2 ))
(= s_0_2 (cons (Int 20) s_0_1 ))
(= s_0_1 (tail s_0_0 ))
(= s_1_4 (cons (Int 4) s_1_3 ))
(= s_1_3 (tail s_1_2 ))
(= s_1_2 (tail s_1_1 ))
(= s_1_1 (cons (Int 18) s_1_0 ))

satisfiable <------- means semantically in - equivalent

5 Execution and Parameters430

For the given example in Listing 1, we set all the parameters in Rewrite Rules (see Listing431

14) and execute the program. Firstly, we generate 20 pairs of inputs-outputs relationships,432

all values are integers in [-255, 256], so the interval of possible distance is from -10220 to433

10220. Thus we set the default bounds for an ill-typed node’s distance as [25000, 50000] by434

the first rule in subsection 3.2.4. We set the max number of lookahead (defined in subsection435

3.2.2), named maxlookahead, as 10, and the max loop times, named n_mutations), as 10,436

which means the maximal mutation in Local Search have 100 steps. We follow the rules437

(see subsection 3.2.4) defining the bounds of distance interval for ill-typed nodes, and keep a438

small probability for generating one ill-typed node with better distance. Thus what we set439

here is that upper bound is 100 times higher than lower bound (except the default initial440

bounds). In Local Search, every time we mutate a well-typed node, lower bounds of this441

interval is set to half of the historical best well-typed node. Every time of perturbation, we442

re-initialize bounds to the given one of each round.443

The number of better nodes to search in lookahead process is set as 5, number of444

perturbation is set as 100 and maximum round is 5. Listing 15 shows the execution results445

we have in 25 minutes. In the first 15 minutes, we already find some qualified candidates,446

and it keeps searching for potential ones.447

The gas consumed for original program is 10.875, so we could have multiple qualified448

candidates with less gas consumed. Using Translation Validation, all candidates are checked449

(see Appendix B) and the best optimized program is solution N°0 in Listing 15. It consumes450

only 7.29499983788 gas, saving around 32.92% resources.451
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Listing 14 Parameters
let rewrite_random ~( update_runs : int) contract_file

relationships_file initial_global_gas
( module R : RULES) =

let t = R. gen_init_node contract_file in
...
let rec update ? heuristic_sol :( init_sol = init_sol )

?( bounds = R. default_bounds ) ~( all_sols : R.sol list)
~( candidates : R.sol list) ~ current_run :( run : int)
( max_loop : int)
( n_stop : int) =

if run = max_loop || n_stop = 0 then Lwt. return candidates
else (

...
R. process

~ bestlookahead :5
~ maxlookahead :10
~ n_pertubations :100
~ n_mutations :10
~ bounds
~ init_sol
relationships_file
initial_global_gas

>>= function
...

6 Conclusion and Future Work452

We have presented a method for gas super-optimization of Smart Contracts based on S-453

metaheuristic in Tezos blockchain. Basically, our focus is on the stack operations for basic454

blocks of Michelson programs. This heuristics-based method offers one alternative way of455

superoptimizing Smart Contracts in terms of gas consumed. We build a basic tool in Tezos456

codebase. Currently, it can sample specific types of values and generate inputs-outputs457

relationships for a well-typed Michelson program; it searches programs by ILS algorithm and458

collect all possible candidates (i.e. consume less gas and qualify inputs-outputs relationships);459

it checks the semantic equivalence by Translation Validation between each candidate and460

original program, and returns optimized programs at the end.461

Talking about its efficiency and quality, unfortunately there is no benchmark for now.462

Judging from only a few examples, its results are accurate and programs synthesized is truly463

optimized in terms of gas consumed. For simple Smart Contracts(e.g. with instructions less464

than 10 lines), this work has a good expectation to synthesize optimized programs after465

acceptable time of search. While there are some limitations of this tool. Firstly, for big Smart466

Contracts, we have to adjust parameters (including the interval bounds design and core467

parameters like number of rounds, number of lookahead execution times, etc.) and it would468

take much more time to search the space. The implementation of ILS algorithm in this work469

is still possible to be optimized. Secondly, this work considers only basic blocks of Michelson470

programs, which means there should be no control flow like for-loops or conditional control471

flow if we want to apply this tool. Thirdly, it lacks benchmarks to evaluate and improve this472

tool.473

Future work should focus on efficiency and benchmarks. It should be able to be find474
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Listing 15 Execution Results
### solution ### N 0
{ parameter int ;

storage int ;
code { DROP ; PUSH int 47 ; NEG ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :7.29499983788
Distance : 0.

### solution ### N 1
{ parameter int ;

storage int ;
code { DROP ; PUSH int 47 ; NEG ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :7.29499983788
Distance : 0.

### solution ### N 2
{ parameter int ;

storage int ;
code { DROP ;

PUSH int 47 ;
ABS ;
PUSH int -234 ;
DROP ;
NEG ;
NIL operation ;
PAIR } }

State : Well -Typed
Cost : # consumed gas :10.125
Distance : 0.

### solution ### N 3
{ parameter int ;

storage int ;
code { DROP ;

PUSH int 47 ;
ABS ;
PUSH int -234 ;
DROP ;
NEG ;
NIL operation ;
PAIR } }

State : Well -Typed
Cost : # consumed gas :10.125
Distance : 0.

### solution ### N 4
{ parameter int ;

storage int ;
code { CAR ; DROP ; PUSH int 47 ; NEG ; NIL operation ; PAIR } }

State : Well -Typed
Cost : # consumed gas :8.09500002861
Distance : 0.
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the optimized program faster, with a better implemented S-metaheuristics method (e.g.475

Metropolis Hasting [13] and Simulated Annealing, etc.) or with a better design of parameters.476

Also, for scoring Michelson programs, arithmetic distance may not be good enough for more477

complex situations. It would perform better by combining multiple methods, e.g. a variety478

of types of edit distance, log-arithmetic distance, etc. This work has proved the feasibility of479

this approach to a certain extent. Optimizing the S-metaheuristics algorithms implemented480

and improving the search mechanism on the basis of the current work should finally get a481

more satisfactory and efficient optimizer for complex Michelson programs.482
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A Important Modules523

A.1 Sampler524

Listing 16 Michelson_value_sampler Module
525

open Protocol526

open Alpha_context527

528

type ’a ty = ’a Script_typed_ir .ty529

530

type ex_ty = Script_ir_translator .ex_ty531

532

type ex_value = Ex_Value : ’a ty * ’a -> ex_value533

534

val get_ast : string -> Script .expr535

536

val parse_expression : ?check:bool -> string -> Micheline_parser .node537

538

type location = int539

540

type node = (location , Script .prim) Micheline .node541

542

val gen : ’a ty -> ’a543

544

val gen_exvalue : ex_ty -> ex_value545

546

val gen_node : string ->547

(location , Michelson_v1_primitives .prim) Micheline .node548

549

val gen_node_with_target_type :550

string ->551

( Script .node * context ,552

Environment . Error_monad .error Environment . Error_monad .trace )553

result554

Lwt.t555

556

val print : string Micheline . canonical -> string557

558

val print_prims :559

string ->560

(string ,561

Environment . Error_monad .error Environment . Error_monad .trace) result562

Lwt.t563

564

val to_string : node -> string565566

A.2 Interpreter567

Listing 17 Michelson_interpreteur Module
568

open Protocol569

open Alpha_context570

open Michelson_v1_primitives571
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open Script_interpreter572

573

val run_script :574

context ->575

? step_constants : step_constants ->576

string ->577

? entrypoint : string ->578

storage : string ->579

parameter : string ->580

unit ->581

( execution_result , error trace) result Lwt.t582

583

val print : string Micheline . canonical -> string584

585

val parse_string : string -> Script .expr586

587

val print_expanded : prim Micheline . canonical -> unit588

589

val interprete_script :590

( context -> ’a) ->591

string ->592

context ->593

string ->594

string ->595

(( string * string ) * string * ’a, ’b) result Lwt.t596597

A.3 Scoring598

Listing 18 Distance Module
599

module type Dist = sig600

val dist : string -> string -> float601

602

val is_zero : float -> bool603

end604

605

(* To make distance computing methods *)606

let mk_arith () =607

( module struct608

let dist x y = Stdlib . abs_float609

(Float. of_string x -. Float. of_string y)610

611

let is_zero x = abs_float x < 0.5612

end : Dist )613

614

let mk_hamming () =615

( module struct616

exception Length_Diff617

618

let dist x y =619

if String . length x != String . length y then raise Length_Diff620

else621

let len = String . length x in622

let rec aux dist i len =623
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if i = len then dist624

else if x.[i] == y.[i] then aux dist (i + 1) len625

else aux (dist + 1) (i + 1) len626

in627

Float. of_int (aux 0 0 len)628

629

let is_zero x = abs_float x < 1.630

end : Dist )631

632

(* in case that there are multiple distances *)633

let sum_dists ? maxindex dist arr arr ’ =634

let max = match maxindex with635

Some i -> i | None -> Array. length arr in636

let rec aux i =637

if i < max then dist arr .(i) arr ’.(i) +. aux (i + 1) else 0.638

in639

aux 0640641

A.4 Search642

Listing 19 MUTATOR Module
643

module type MUTATOR = sig644

type t = Add | Delete | R_Push645

646

type state = Well_Typed | Ill_Typed647

648

type full_node = { n : node; st : state }649

650

val self_init_prim : unit -> node651

652

val init_prim : prim -> prim -> node653

654

val st_to_string : state -> string655

656

val typecheck :657

node ->658

( Script_tc_errors . type_map * Alpha_context .t)659

Environment . Error_monad . tzresult660

Lwt.t661

662

(* mutation without typechecking *)663

val mutate : node -> node Environment . Error_monad . tzresult Lwt.t664

665

(* using typecheck to generate a node *)666

val mutate_2 : node ->667

full_node Environment . Error_monad . tzresult Lwt.t668

end669670

Listing 20 RULES Module
671

module type RULES = sig672

type t = node673

674
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module M : MUTATOR675

676

val check_types_2 : t -> bool677

678

val swap_1 : t -> int list679

680

val cut : t -> int -> int list -> t681

682

val gen_init_node : string -> t683

684

val interprete_random_node :685

sample array -> t -> Alpha_context .t ->686

int -> ( string array * string ) Lwt.t687

688

type bounds = { floor : float; ceil : float }689

690

val default_bounds : bounds691

692

type sol =693

{ full_node : M. full_node ;694

cost : string ;695

distance : float;696

bounds : bounds697

}698

699

val distance_list : float list ref700

701

val process :702

? bestlookahead :int ->703

? maxlookahead :int ->704

? n_pertubations :int ->705

? n_mutations :int ->706

bounds : bounds ->707

init_sol :sol ->708

string ->709

int ->710

sol list Environment . Error_monad . tzresult Lwt.t711

712

val output_file : string -> string713

714

val save_sols : sol list -> string -> unit Lwt.t715

end716717

B Translation Validation718

Here are the execution results of Translation Validation for distinct solutions in Listing 15.719

Listing 21 Solution N 0
720

#### Program 0 ####721

{ parameter int; storage int; code { DROP ; PUSH int 47; NEG ;722

PUSH int 84 ; SWAP; SWAP ; DROP ; NIL operation ; PAIR }}723

initial stack :s_0_0724

stack - s_0_1725
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constraint - (= s_0_1 (tail s_0_0 ))726

stack - s_0_2727

constraint - (= s_0_2 (cons (Int 47) s_0_1 ))728

stack - s_0_3729

constraint - (let ((a!1 (Int (- 0 (int (head s_0_2 ))))))730

(= s_0_3 (cons a!1 (tail s_0_2 ))))731

stack - s_0_4732

constraint - (= s_0_4 (cons (Int 84) s_0_3 ))733

stack - s_0_5734

constraint - (let ((a!1 (cons (head (tail s_0_4 ))735

(cons (head s_0_4)736

(tail (tail s_0_4 ))))))737

(= s_0_5 a!1))738

stack - s_0_6739

constraint - (let ((a!1 (cons (head (tail s_0_5 ))740

(cons (head s_0_5)741

(tail (tail s_0_5 ))))))742

(= s_0_6 a!1))743

stack - s_0_7744

constraint - (= s_0_7 (tail s_0_6 ))745

final stack :s_0_7746

747

#### Program 1 ####748

{ parameter int ;749

storage int ;750

code { DROP ; PUSH int 47 ; NEG ; NIL operation ; PAIR } }751

initial stack :s_1_0752

stack - s_1_1753

constraint - (= s_1_1 (tail s_1_0 ))754

stack - s_1_2755

constraint - (= s_1_2 (cons (Int 47) s_1_1 ))756

stack - s_1_3757

constraint - (let ((a!1 (Int (- 0 (int (head s_1_2 ))))))758

(= s_1_3 (cons a!1 (tail s_1_2 ))))759

final stack :s_1_3760

761

#### Solver ####762

(= s_0_0 s_1_0)763

( distinct s_0_7 s_1_3)764

(= s_0_7 (tail s_0_6 ))765

(let ((a!1 (cons (head (tail s_0_5 ))766

(cons (head s_0_5) (tail (tail s_0_5 ))))))767

(= s_0_6 a!1))768

(let ((a!1 (cons (head (tail s_0_4 ))769

(cons (head s_0_4) (tail (tail s_0_4 ))))))770

(= s_0_5 a!1))771

(= s_0_4 (cons (Int 84) s_0_3 ))772

(let ((a!1 (Int (- 0 (int (head s_0_2 ))))))773

(= s_0_3 (cons a!1 (tail s_0_2 ))))774

(= s_0_2 (cons (Int 47) s_0_1 ))775

(= s_0_1 (tail s_0_0 ))776

(let ((a!1 (Int (- 0 (int (head s_1_2 ))))))777

(= s_1_3 (cons a!1 (tail s_1_2 ))))778

(= s_1_2 (cons (Int 47) s_1_1 ))779

(= s_1_1 (tail s_1_0 ))780
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781

unsatisfiable <------- means semantically equivalent782783

Listing 22 Solution N 2 (with same Program 0 in Listing 21)
784

#### Program 1 ####785

{ parameter int ;786

storage int ;787

code { DROP ;788

PUSH int 47 ;789

ABS ;790

PUSH int -234 ;791

DROP ;792

NEG ;793

NIL operation ;794

PAIR } }795

initial stack :s_1_0796

stack - s_1_1797

constraint - (= s_1_1 (tail s_1_0 ))798

stack - s_1_2799

constraint - (= s_1_2 (cons (Int 47) s_1_1 ))800

stack - s_1_3801

constraint - (let ((a!1 (ite (> (int (head s_1_2 )) 0)802

(int (head s_1_2 ))803

(- 0 (int (head s_1_2 ))))))804

(= s_1_3 (cons (Int a!1) (tail s_1_2 ))))805

stack - s_1_4806

constraint - (= s_1_4 (cons (Int (- 234)) s_1_3 ))807

stack - s_1_5808

constraint - (= s_1_5 (tail s_1_4 ))809

stack - s_1_6810

constraint - (let ((a!1 (Int (- 0 (int (head s_1_5 ))))))811

(= s_1_6 (cons a!1 (tail s_1_5 ))))812

final stack :s_1_6813

814

#### Solver ####815

(= s_0_0 s_1_0)816

( distinct s_0_7 s_1_6)817

(= s_0_7 (tail s_0_6 ))818

(let ((a!1 (cons (head (tail s_0_5 ))819

(cons (head s_0_5) (tail (tail s_0_5 ))))))820

(= s_0_6 a!1))821

(let ((a!1 (cons (head (tail s_0_4 ))822

(cons (head s_0_4) (tail (tail s_0_4 ))))))823

(= s_0_5 a!1))824

(= s_0_4 (cons (Int 84) s_0_3 ))825

(let ((a!1 (Int (- 0 (int (head s_0_2 ))))))826

(= s_0_3 (cons a!1 (tail s_0_2 ))))827

(= s_0_2 (cons (Int 47) s_0_1 ))828

(= s_0_1 (tail s_0_0 ))829

(let ((a!1 (Int (- 0 (int (head s_1_5 ))))))830

(= s_1_6 (cons a!1 (tail s_1_5 ))))831

(= s_1_5 (tail s_1_4 ))832

(= s_1_4 (cons (Int (- 234)) s_1_3 ))833

(let ((a!1 (ite (> (int (head s_1_2 )) 0)834
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(int (head s_1_2 ))835

(- 0 (int (head s_1_2 ))))))836

(= s_1_3 (cons (Int a!1) (tail s_1_2 ))))837

(= s_1_2 (cons (Int 47) s_1_1 ))838

(= s_1_1 (tail s_1_0 ))839

840

unsatisfiable <------- means semantically equivalent841842

Listing 23 Solution N 4 (with same Program 0 in Listing 21)
843

#### Program 1 ####844

{ parameter int ;845

storage int ;846

code { CAR ; DROP ; PUSH int 47 ; NEG ; NIL operation ; PAIR } }847

initial stack :s_1_0848

stack - s_1_1849

constraint - (= s_1_1 (cons (car (head s_1_0 )) (tail s_1_0 )))850

stack - s_1_2851

constraint - (= s_1_2 (tail s_1_1 ))852

stack - s_1_3853

constraint - (= s_1_3 (cons (Int 47) s_1_2 ))854

stack - s_1_4855

constraint - (let ((a!1 (Int (- 0 (int (head s_1_3 ))))))856

(= s_1_4 (cons a!1 (tail s_1_3 ))))857

final stack :s_1_4858

859

#### Solver ####860

(= s_0_0 s_1_0)861

( distinct s_0_7 s_1_4)862

(= s_0_7 (tail s_0_6 ))863

(let ((a!1 (cons (head (tail s_0_5 ))864

(cons (head s_0_5) (tail (tail s_0_5 ))))))865

(= s_0_6 a!1))866

(let ((a!1 (cons (head (tail s_0_4 ))867

(cons (head s_0_4) (tail (tail s_0_4 ))))))868

(= s_0_5 a!1))869

(= s_0_4 (cons (Int 84) s_0_3 ))870

(let ((a!1 (Int (- 0 (int (head s_0_2 ))))))871

(= s_0_3 (cons a!1 (tail s_0_2 ))))872

(= s_0_2 (cons (Int 47) s_0_1 ))873

(= s_0_1 (tail s_0_0 ))874

(let ((a!1 (Int (- 0 (int (head s_1_3 ))))))875

(= s_1_4 (cons a!1 (tail s_1_3 ))))876

(= s_1_3 (cons (Int 47) s_1_2 ))877

(= s_1_2 (tail s_1_1 ))878

(= s_1_1 (cons (car (head s_1_0 )) (tail s_1_0 )))879

880

unsatisfiable <------- means semantically equivalent881882
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