Part 1: RF(Radiofrequency)/microwave electronics

Decibels, gain, and insertion loss

Digital communication environment: Guided propagation , “Free space” propagation(including electromagnetic waves which we will learn).

Flowgraph of a communication system:

[picure:flowgraph_of_system.jpg]

{bi} -> digital communication transmitter -> radio frequency transmitter ~~~> radio frequency receiver -> digital commnication receiver -> {b’i}

Examples of RF/microwave systems

[picture:block_digram_wireless_radio_system.jpg]

FDMA,TDMA,SDMA:Frequency,Time,Space division multiple address

Standard components:

  1. Power dividers and combiners/directional couplers
  2. Filters
  3. Oscillators
  4. Amplifiers
  5. Mixers
  6. Antennas

Decibels

Difinition: dimensionless number that express the radio of two values of a physical quantity, often power or voltage.

Conversion from linear to dB values:

  • Power ratio in dB = $10log_{10}(\frac{P_1}{P_2})$
  • Voltage ratio in dB = $20log_{10}(\frac{V_1}{V_2})$

Conversion from dB to linear values:

  • Power radio = $10^{(\frac{dB}{10})}$
  • Voltage radio = $10^{(\frac{dB}{20})}$

也就意味着,同一个dB对应了不同的功率比率和电压比率。

Gain, insertion loss and return loss

Transmission coefficient in dB:

  • if $P_{out} \geq P_{in}$, gain [增加量] G = $10log_{10}(\frac{P_out}{P_in})$
  • if $P_{out} \leq P_{in}$, insertion loss [减少量] IL = $10log_{10}(\frac{P_in}{P_out})$

Total gain $G_T = (G_1 + G_2 + …) - (IL_1 + IL_2 + …)$,so $P_{out} = G_T + P_{in}$

Filter -> IL
Ampligier -> G
Attenuator -> IL

Notice: Overall gain in linear : $G_T in linear = \frac{G in linear}{IL in linear}, P_{out} in linear = P_{in} in linear * G_T in linear$

Decibels as absolute units

P in dBW = $10log_{10}(P in W)$
P in dBm = $10log_{10}(P in mW)$

So, value of dBm = value of dBW + 30 [另外,每当真实值减小一半的时候,dB值减少约3dB]
2W = 3.010dBW = 2000mW = 33.010dBm
1W = 0dBW = 1000mW = 30 dBm
0.001W = -30dBW = 1mW = 0 dBm

关于Insertion Loss,如果IL= 0,那么损失值为0,也就是说,功率转换率为100%;而如果IL = 3.01,那么转换系数为0.71,功率转换率为50%。

RF/microwave circuits

Power dividers/combiners and directional couplers

  • Poweer dividers/combiners

Main characteristics(in its frequency band):

  1. Good input and output impedance matching
  2. Low additional insertion loss
  3. Good isolation between outputs
  4. Constant coupling factors(amplitude and phase)
  • Directional couplers

input port ; direct port ; coupled port ; isolated or uncoupled port.

Important parameters:

  1. Coupling factor
  2. Directivity
  3. Isolation
  4. Insertion loss

Main characteristics(in its frequency band):

  1. Good input and output impedance matching
  2. Low additional insertion loss
  3. High isolation and directivity 高隔离度和方向性
  4. Constant coupling(amplitude and phase)
  • Hybrids

Principle: 3dB directional couplers [定向耦合器] with specific phase difference between the outputs of the through and coupled arms(isolated port terminated with a matched load).
在直通和耦合的两个方向之间有特定相位差。

Filters

Purpose:four types of passive devices to control the frequency content of RF/microwave signals.

  • Low-pass
  • High-pass
  • Bandpass
  • Bandstop

Main characteristics:

  • Good input and output impedance matching in the passbands
  • Low insertion loss in the passbands
  • High rejection(attenuation or insertion loss) everwhere else.

switches, attenuators[衰减器], phase shifters

purpose: passive or active devices to probide electronic control of the phase and amplitude of RF/microwave signals.

Main characteristics(in its frequency band):

  • Good input and output impedance matching
  • Lowadditional insertion losss and hiah isolation for switches
  • Large number of values for the attenuation or phase shift
  • Fast switching speed

Oscillators [振荡器]

Purpose: acive devices to provide RF/microwave sources in transmitters and local oscillators in upconverters and downconverters.
有源器件,可在发射机中提供射频/微波源,并在上变频器和下变频器中提供本地振荡器。

Main characteristics:

Amplifiers

Purpose: active devices to provide power gain to the input RF/microwave signal.

Different topologies:

  • High Power Amplifiers(HPA) for transmitters: very high output power but noisy
  • Low Noise Anplifiers(LNA) for receivers:low output power but less noisy

Typical response:

[picture:response_amplifiers.jpg]

Main characteristics(in its frequency band):

  1. Good input and output impedance matching
  2. High dynamic
  3. High output power for HPA and low noise figure for LNA
  4. Good linearity
  5. High Power Added Efficiency(PAE): $PAE = \frac{P_{out}-P_{in}}{P_{DC} * 100\%}$

Mixers

Purpose: Nonlinear devices to achieve frequency conversion

Basic principle:

  • Up-conversion(transmitter): mix an intermediate-frequency signal with a local oscillator signal to obtain a high-grequency signal= IF + LO = RF
  • Down-conversion(receiver):RF + LO = IF

Main characteristics:

  1. Good …
  2. stable LO power
  3. Low conversion loss
  4. Low noise figure
  5. Good isolation between any two of the RF, IF and LO ports
  6. Good dynamic range

RF/microwave antennas

Purpose: passive device to radiate and receive RF/microwave signals(transition between guided and free-space waves)

Time-domain Maxwell equations;

Far-field radiation produced by an antenna:
properties and average power density.

  • Fundamental parameters
    1. Antenna efficiency e: $e = \frac{P_rad}{P_{in}} = e_re_{rad} \leq 1$
    • $e_r$ Reflection(mismatch) efficiency[反射(不匹配)效率]
    • $e_{rad}$ Radiation(conduction-dielectric) efficiency[辐射(传导介电)效率]
      1. Field regions
    • Usual subdivision of the space surrounding an antenna:
      • Rayleigh or reactive near-field region $R_1 = 0.62 \sqrt{\frac{D^3}{\lambda}}$
      • Fresnel or radiating near-field region $R_2 = \frac{2D^2}{\lambda}$
      • Fraunhofer of far-field region
        1. Radiation patterns[辐射图]
    • Major(main)lobe
    • Side lobe
    • Side lobe level(SLL)
    • Mian radiation patterns:
      • isotropic antenna
      • directional antenna
      • omnidirectional antenna
        1. Radiated power $P_{rad}$: integration of the average power density(the far-field region)
        2. Directivity $D(\theta,\phi)$
    • dimensionless and independent of r(in the far-field region)
    • Often expressed in decibels
      1. Gain $G(\theta,\phi)$: take into account the efficiency of the antenna
        高增益天线意味着高方向性的天线。
      2. Antenna effective area $A_e(\theta,\phi)$
    • the aperture efficiency
    • to obtain a large gain we need a large antenna relative to the wavelength
      1. Antenna noise temperature
    • Background noise temperature TB
    • Brightness temperature Tb
    • Antenna noise temperature

Friis equation in free-space

  • Power density radiated by:
    • an isotropic antenna
    • a directive antenna
  • EIRP: Equivalent Isotropic Radiated Power $EIRP = P_{in} G_{tmax}$
  • SNR at receiving antenna terminals
    • Frequency
    • Distance
    • Characteristics of the transmitter(EIRP) and receiver (G/T)

System noise

  • Noise in RF/microwave receivers:
    • external noise
    • internal noise
      • Thermal noise power
  • Equivalent noise temperature

  • Noise figure

  • Special case

  • Noise for a cascaded system

Part 2 - Principles of digital communications

Digital communications: transmitting elements from a discrete alphabet through a continuous environment.

带通信号,实际上就是一个实窄带高频信号,因为是real,所以傅里叶变换后的频谱共轭对称; 因此分为正频谱和负频谱,我们可以认为正频谱作为分析(解析)信号或者预包络,因为正频谱已经携带了所有该信号的信息。 载频信号往往等于带通信号的信号中心f0,但是也可能不等于;我们在分析带通信号时,可以不考虑载频信号,因为载频信号与数字信息内容无关。 因此,把带通信号去掉载频信号,然后再变成等效低通信号表示,更有利于我们的分析。

我们定义这个低通信号,也就是基带信号,是两倍的正频谱信号,然后把他移到频谱中心位置(向左移f0到低频);由于我们只是单纯平移,并没有要求该信号在频谱上共轭对称,因此需要对该信号用复数形式表示,也就是有两个正交分量, 分别叫做in-phase signal 和quadrature signal。

带通信号是真实存在的实信号,基带信号是复信号。
我们需要建立两者之间的表达式。
首先,对带宽信号进行解释:信号的带宽,是整个非零频谱的一半,所以带通信号的带宽是2B,基带信号的带宽是B。 其次,公式推导(纸质版),可以获得带通信号的三种表示方式。

Transmission over a carrier frequency

Real transmission system

  • Baseband transmission
  • Prqctical IQ transceiver

Complex equivalent system

  • real bandpass signal
  • analytic signal
  • complex envelope signal

等效低通信号,也称复包络。其频谱等于两倍的向左移f0的解析信号的频谱。进行傅里叶反变换,可以得到其时域信号。

linear modulations[线性调制]

Transmission system model

Amplitude-shift keying(ASK)

调制解调与希尔伯特变换

调制解调,我们是根据载波信号进行调制。也就是说,等效低通信号对载波频率进行调制再取实部获得带通信号,解调的时候,我们对预包络信号进行解调,得到等效低通信号。